14 Reinforcement Learning

This chapter presents an introduction to reinforcement learning, a rich area of machine learning with connections to control theory, optimization, and cognitive sciences. Reinforcement learning is the study of planing and learning in a scenario where a learner actively interacts with the environment to achieve a certain goal. This active interaction justifies the terminology of agent used to refer to the learner. The achievement of the agent's goal is typically measured by the reward he receives from the environment and which he seeks to maximize.

We first introduce the general scenario of reinforcement learning and then introduce the model of Markov decision processes (MDPs), which is widely adopted in this area, as well as essential concepts such as that of policy or policy value related to this model. The rest of the chapter presents several algorithms for the planning problem, which corresponds to the case where the environment model is known to the agent, and then a series of learning algorithms for the more general case of an unknown model.

14.1 Learning scenario

The general scenario of reinforcement learning is illustrated by figure 14.1. Unlike the supervised learning scenario considered in previous chapters, here, the learner does not passively receive a labeled data set. Instead, he collects information through a course of actions by interacting with the environment. In response to an action, the learner or agent, receives two types of information: his current state in the environment, and a real-valued reward, which is specific to the task and its corresponding goal.
There are several differences between the learning scenario of reinforcement learning and that of supervised learning examined in most of the previous chapters. Unlike the supervised learning scenario, in reinforcement learning there is no fixed distribution according to which instances are drawn; the choice of a policy defines the distribution. In fact, slight changes to the policy may have dramatic effects on the rewards received. Furthermore, in general, the environment may not be fixed

Figure 14.1 Representation of the general scenario of reinforcement learning.
and could vary as a result of the actions selected by the agent. This may be a more realistic model for some learning problems than the standard supervised learning.

The objective of the agent is to maximize his reward and thus to determine the best course of actions, or policy, to achieve that objective. However, the information he receives from the environment is only the immediate reward related to the action just taken. No future or long-term reward feedback is provided by the environment. An important aspect of reinforcement learning is to take into consideration delayed rewards or penalties. The agent is faced with the dilemma between exploring unknown states and actions to gain more information about the environment and the rewards, and exploiting the information already collected to optimize his reward. This is known as the exploration versus exploitation tradeoff inherent in reinforcement learning. Note that within this scenario, training and testing phases are intermixed.

Two main settings can be distinguished here: the case where the environment model is known to the agent, in which case his objective of maximizing the reward received is reduced to a planning problem, and the case where the environment model is unknown, in which case he faces a learning problem. In the latter case, the agent must learn from the state and reward information gathered to both gain information about the environment and determine the best action policy. This chapter presents algorithmic solutions for both of these settings.

14.2 Markov decision process model

We first introduce the model of Markov decision processes (MDPs), a model of the environment and interactions with the environment widely adopted in reinforcement learning. An MDP is a Markovian process defined as follows.

Definition 14.1 MDPs

A Markov decision process (MDP) is defined by:

- a set of states S, possibly infinite.
- a start state or initial state $s_{0} \in S$.
- a set of actions A, possibly infinite.
- a transition probability $\operatorname{Pr}\left[s^{\prime} \mid s, a\right]$: distribution over destination states $s^{\prime}=\delta(s, a)$.
- a reward probability $\operatorname{Pr}\left[r^{\prime} \mid s, a\right]$: distribution over rewards returned $r^{\prime}=r(s, a)$.

The model is Markovian because the transition and reward probabilities depend only on the current state s and not the entire history of states and actions taken. This definition of MDP can be further generalized to the case of non-discrete state and action sets.

In a discrete-time model, actions are taken at a set of decision epochs $\{0, \ldots, T\}$, and this is the model we will adopt in what follows. This model can also be straightforwardly generalized to a continuous-time one where actions are taken at arbitrary points in time.

When T is finite, the MDP is said to have a finite horizon. Independently of the finiteness of the time horizon, an MDP is said to be finite when both S and A are finite sets. Here, we are considering the general case where the reward $r(s, a)$ at state s when taking action a is a random variable. However, in many cases, the reward is assumed to be a deterministic function of the pair of the state and action pair (s, a).

Figure 14.2 illustrates the model corresponding to an MDP. At time $t \in[0, T]$ the state observed by the agent is s_{t} and he takes action $a_{t} \in A$. The state reached is s_{t+1} (with probability $\operatorname{Pr}\left[s_{t+1} \mid a_{t}, s_{t}\right]$) and the reward received $r_{t+1} \in \mathbb{R}$ (with probability $\operatorname{Pr}\left[r_{t+1} \mid a_{t}, s_{t}\right]$).

Many real-world tasks can be represented by MDPs. Figure 14.3 gives the example of a simple MDP for a robot picking up balls on a tennis court.

14.3 Policy

The main problem for an agent in an MDP environment is to determine the action to take at each state, that is, an action policy.

14.3.1 Definition

Definition 14.2 Policy

A policy is a mapping $\pi: S \rightarrow A$.
More precisely, this is the definition of a stationary policy since the choice of the action does not depend on the time. More generally, we could define a non-stationary

Figure 14.2 Illustration of the states and transitions of an MDP at different times.
policy as a sequence of mappings $\pi_{t}: S \rightarrow A$ indexed by t. In particular, in the finite horizon case, typically a non-stationary policy is necessary.

The agent's objective is to find a policy that maximizes his expected (reward) return. The return he receives following a policy π along a specific sequence of states s_{t}, \ldots, s_{T} is defined as follows:

- finite horizon $(T<\infty)$: $\sum_{\tau=0}^{T-t} r\left(s_{t+\tau}, \pi\left(s_{t+\tau}\right)\right)$.
- infinite horizon $(T=\infty)$: $\sum_{\tau=0}^{T-t} \gamma^{\tau} r\left(s_{t+\tau}, \pi\left(s_{t+\tau}\right)\right)$, where $\gamma \in[0,1)$ is a constant factor less than one used to discount future rewards.

Note that the return is a single scalar summarizing a possibly infinite sequence of immediate rewards. In the discounted case, early rewards are viewed as more valuable than later ones.

This leads to the following definition of the value of a policy at each state.

14.3.2 Policy value

Definition 14.3 Policy value

The value $V_{\pi}(s)$ of a policy π at state $s \in S$ is defined as the expected reward returned when starting at s and following policy π :

- finite horizon: $V_{\pi}(s)=\mathrm{E}\left[\sum_{\tau=0}^{T-t} r\left(s_{t+\tau}, \pi\left(s_{t+\tau}\right)\right) \mid s_{t}=s\right]$;
- infinite discounted horizon: $V_{\pi}(s)=\mathrm{E}\left[\sum_{\tau=0}^{T-t} \gamma^{\tau} r\left(s_{t+\tau}, \pi\left(s_{t+\tau}\right)\right) \mid s_{t}=s\right]$;
where the expectations are over the random selection of the states s_{t} and the reward values r_{t+1}. An infinite undiscounted horizon is also often considered based on the limit of the average reward, when it exists.

As we shall see later, there exists a policy that is optimal for any start state. In view of the definition of the policy values, seeking the optimal policy can be equivalently formulated as determining a policy with maximum value at all states.

14.3.3 Policy evaluation

The value of a policy at state s can be expressed in terms of its values at other states, forming a system of linear equations.

Figure 14.3 Example of a simple MDP for a robot picking up balls on a tennis court. The set of actions is $A=\{$ search, carry, pickup $\}$ and the set of states reduced to $S=\{$ start, other $\}$. Each transition is labeled with the action followed by the probability of the transition probability and the reward received after taking that action. R_{1}, R_{2}, and R_{3} are real numbers indicating the reward associated to each transition (case of deterministic reward).

Proposition 14.1 Bellman equation

The values $V_{\pi}(s)$ of policy π at states $s \in S$ for an infinite horizon MDP obey the following system of linear equations:

$$
\begin{equation*}
\forall s \in S, V_{\pi}(s)=\mathrm{E}\left[r(s, \pi(s)]+\gamma \sum_{s^{\prime}} \operatorname{Pr}\left[s^{\prime} \mid s, \pi(s)\right] V_{\pi}\left(s^{\prime}\right)\right. \tag{14.1}
\end{equation*}
$$

Proof We can decompose the expression of the policy value as a sum of the first term and the rest of the terms:

$$
\begin{aligned}
V_{\pi}(s) & =\mathrm{E}\left[\sum_{\tau=0}^{T-t} \gamma^{\tau} r\left(s_{t+\tau}, \pi\left(s_{t+\tau}\right)\right) \mid s_{t}=s\right] \\
& =\mathrm{E}\left[r(s, \pi(s)]+\gamma \mathrm{E}\left[\sum_{\tau=0}^{T-t} \gamma^{\tau} r\left(s_{t+1+\tau}, \pi\left(s_{t+1+\tau}\right)\right) \mid s_{t}=s\right]\right. \\
& =\mathrm{E}\left[r(s, \pi(s)]+\gamma \mathrm{E}\left[V_{\pi}(\delta(s, \pi(s)))\right],\right.
\end{aligned}
$$

since we can recognize the expression of $V_{\pi}(\delta(s, \pi(s)))$ in the expectation of the second line.

The Bellman equations can be rewritten as

$$
\begin{equation*}
\mathbf{V}=\mathbf{R}+\gamma \mathbf{P} \mathbf{V} \tag{14.2}
\end{equation*}
$$

using the following notation: \mathbf{P} denotes the transition probability matrix defined by $\mathbf{P}_{s, s^{\prime}}=\operatorname{Pr}\left[s^{\prime} \mid s, \pi(s)\right]$ for all $s, s^{\prime} \in S ; \mathbf{V}$ is the value column matrix whose s th component is $\mathbf{V}_{s}=V_{\pi}(s)$; and \mathbf{R} the reward column matrix whose s th component is $\mathbf{R}_{s}=\mathrm{E}[r(s, \pi(s)]$. \mathbf{V} is typically the unknown variable in the Bellman equations and is determined by solving for it. The following theorem shows that for a finite

MDP this system of linear equations admits a unique solution.

Theorem 14.1

For a finite MDP, Bellman's equation admits a unique solution given by

$$
\begin{equation*}
\mathbf{V}_{0}=(\mathbf{I}-\gamma \mathbf{P})^{-1} \mathbf{R} \tag{14.3}
\end{equation*}
$$

Proof The Bellman equation (14.2) can be equivalently written as

$$
(\mathbf{I}-\gamma \mathbf{P}) \mathbf{V}=\mathbf{R}
$$

Thus, to prove the theorem it suffices to show that $(\mathbf{I}-\gamma \mathbf{P})$ is invertible. To do so, note that the norm infinity of \mathbf{P} can be computed using its stochasticity properties:

$$
\|\mathbf{P}\|_{\infty}=\max _{s} \sum_{s^{\prime}}\left|\mathbf{P}_{s s^{\prime}}\right|=\max _{s} \sum_{s^{\prime}} \operatorname{Pr}\left[s^{\prime} \mid s, \pi(s)\right]=1
$$

This implies that $\|\gamma \mathbf{P}\|_{\infty}=\gamma<1$. The eigenvalues of \mathbf{P} are thus all less than one, and $(\mathbf{I}-\gamma \mathbf{P})$ is invertible.

Thus, for a finite MDP, when the transition probability matrix \mathbf{P} and the reward expectations \mathbf{R} are known, the value of policy π at all states can be determined by inverting a matrix.

14.3.4 Optimal policy

The objective of the agent can be reformulated as that of seeking the optimal policy defined as follows.

Definition 14.4 Optimal policy

A policy π^{*} is optimal if it has maximal value for all states $s \in S$.
Thus, by definition, for any $s \in S, V_{\pi^{*}}(s)=\max _{\pi} V_{\pi}(s)$. We will use the shorter notation V^{*} instead of $V_{\pi^{*}} . V^{*}(s)$ is the maximal cumulative reward the agent can expect to receive when starting at state s.

Definition 14.5 State-action value function

The optimal state-action value function Q^{*} is defined for all $(s, a) \in S \times A$ as the expected return for taking action $a \in A$ at state $s \in S$ and then following the optimal policy:

$$
\begin{equation*}
Q^{*}(s, a)=\mathrm{E}[r(s, a)]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] V^{*}\left(s^{\prime}\right) \tag{14.4}
\end{equation*}
$$

It is not hard to see then that the optimal policy values are related to Q^{*} via

$$
\begin{equation*}
\forall s \in S, V^{*}(s)=\max _{a \in A} Q^{*}(s, a) \tag{14.5}
\end{equation*}
$$

Indeed, by definition, $V^{*}(s) \leq \max _{a \in A} Q^{*}(s, a)$ for all $s \in S$. If for some s we had $V^{*}(s)<\max _{a \in A} Q^{*}(s, a)$, then then maximizing action would define a better policy. Observe also that, by definition of the optimal policy, we have

$$
\begin{equation*}
\forall s \in S, \pi^{*}(s)=\underset{a \in A}{\operatorname{argmax}} Q^{*}(s, a) . \tag{14.6}
\end{equation*}
$$

Thus, the knowledge of the state-value function Q^{*} is sufficient for the agent to determine the optimal policy, without any direct knowledge of the reward or transition probabilities. Replacing Q^{*} by its definition in (14.5) gives the following system of equations for the optimal policy values $V^{*}(s)$:

$$
\begin{equation*}
V^{*}(s)=\max _{a \in A}\left\{\mathrm{E}[r(s, a)]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] V^{*}\left(s^{\prime}\right)\right\} \tag{14.7}
\end{equation*}
$$

also known as Bellman equations. Note that this new system of equations is not linear due to the presence of the max operator. It is distinct from the previous linear system we defined under the same name in (14.1) and (14.2).

14.4 Planning algorithms

In this section, we assume that the environment model is known. That is, the transition probability $\operatorname{Pr}\left[s^{\prime} \mid s, a\right]$ and the expected reward $\mathrm{E}[r(s, a)]$ for all $s, s^{\prime} \in S$ and $a \in A$ are assumed to be given. The problem of finding the optimal policy then does not require learning the parameters of the environment model or estimating other quantities helpful in determining the best course of actions, it is purely a planning problem.

This section discusses three algorithms for this planning problem: the value iteration algorithm, the policy iteration algorithm, and a linear programming formulation of the problem.

14.4.1 Value iteration

The value iteration algorithm seeks to determine the optimal policy values $V^{*}(s)$ at each state $s \in S$, and thereby the optimal policy. The algorithm is based on the Bellman equations (14.7). As already indicated, these equations do not form a system of linear equations and require a different technique to determine the solution. The main idea behind the design of the algorithm is to use an iterative

```
ValueIteration \(\left(\mathbf{V}_{0}\right)\)
    \(1 \quad \mathbf{V} \leftarrow \mathbf{V}_{0} \triangleright \mathbf{V}_{0}\) arbitrary value
    while \(\|\mathbf{V}-\boldsymbol{\Phi}(\mathbf{V})\| \geq \frac{(1-\gamma) \epsilon}{\gamma}\) do
    \(\mathbf{V} \leftarrow \boldsymbol{\Phi}(\mathbf{V})\)
    return \(\Phi(\mathbf{V})\)
```

Figure 14.4 Value iteration algorithm.
method to solve them: the new values of $V(s)$ are determined using the Bellman equations and the current values. This process is repeated until a convergence condition is met.
For a vector \mathbf{V} in $\mathbb{R}^{|S|}$, we denote by $V(s)$ its s th coordinate, for any $s \in S$. Let $\Phi: \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ be the mapping defined based on Bellman's equations (14.7):

$$
\begin{equation*}
\forall s \in S,[\mathbf{\Phi}(\mathbf{V})](s)=\max _{a \in A}\left\{\mathrm{E}[r(s, a)]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] V\left(s^{\prime}\right)\right\} \tag{14.8}
\end{equation*}
$$

The maximizing actions $a \in A$ in these equations define an action to take at each state $s \in S$, that is a policy π. We can thus rewrite these equations in matrix terms as follows:

$$
\begin{equation*}
\mathbf{\Phi}(\mathbf{V})=\max _{\pi}\left\{\mathbf{R}_{\pi}+\gamma \mathbf{P}_{\pi} \mathbf{V}\right\} \tag{14.9}
\end{equation*}
$$

where \mathbf{P}_{π} is the transition probability matrix defined by $\left(\mathbf{P}_{\pi}\right)_{s s^{\prime}}=\operatorname{Pr}\left[s^{\prime} \mid s, \pi(s)\right]$ for all $s, s^{\prime} \in S$, and \mathbf{R}_{π} the reward vector defined by $\left(\mathbf{R}_{\pi}\right)_{s}=\mathrm{E}[r(s, \pi(s)]$, for all $s \in S$.

The algorithm is directly based on (14.9). The pseudocode is given above. Starting from an arbitrary policy value vector $\mathbf{V}_{0} \in \mathbb{R}^{|S|}$, the algorithm iteratively applies $\boldsymbol{\Phi}$ to the current \mathbf{V} to obtain a new policy value vector until $\|\mathbf{V}-\boldsymbol{\Phi}(\mathbf{V})\|<$ $\frac{(1-\gamma) \epsilon}{\gamma}$, where $\epsilon>0$ is a desired approximation. The following theorem proves the convergence of the algorithm to the optimal policy values.

Theorem 14.2
For any initial value \mathbf{V}_{0}, the sequence defined by $\mathbf{V}_{n+1}=\mathbf{\Phi}\left(\mathbf{V}_{n}\right)$ converges to \mathbf{V}^{*}.
Proof We first show that $\boldsymbol{\Phi}$ is γ-Lipschitz for the $\|\cdot\|_{\infty} \cdot{ }^{1}$ For any $s \in S$ and

[^0]$\mathbf{V} \in \mathbb{R}^{|S|}$, let $a^{*}(s)$ be the maximizing action defining $\boldsymbol{\Phi}(\mathbf{V})(s)$ in (14.8). Then, for any $s \in S$ and any $\mathbf{U} \in \mathbb{R}^{|S|}$,
\[

$$
\begin{aligned}
\mathbf{\Phi}(\mathbf{V})(s)-\boldsymbol{\Phi}(\mathbf{U})(s) & \leq \boldsymbol{\Phi}(\mathbf{V})(s)-\left(\mathrm{E}\left[r\left(s, a^{*}(s)\right)\right]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a^{*}(s)\right] \mathbf{U}\left(s^{\prime}\right)\right) \\
& =\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a^{*}(s)\right]\left[\mathbf{V}\left(s^{\prime}\right)-\mathbf{U}\left(s^{\prime}\right)\right] \\
& \leq \gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a^{*}(s)\right]\|\mathbf{V}-\mathbf{U}\|_{\infty}=\gamma\|\mathbf{V}-\mathbf{U}\|_{\infty} .
\end{aligned}
$$
\]

Proceeding similarly with $\boldsymbol{\Phi}(\mathbf{U})(s)-\boldsymbol{\Phi}(\mathbf{V})(s)$, we obtain $\boldsymbol{\Phi}(\mathbf{U})(s)-\boldsymbol{\Phi}(\mathbf{V})(s) \leq$ $\gamma\|\mathbf{V}-\mathbf{U}\|_{\infty}$. Thus, $|\boldsymbol{\Phi}(\mathbf{V})(s)-\boldsymbol{\Phi}(\mathbf{U})(s)| \leq \gamma\|\mathbf{V}-\mathbf{U}\|_{\infty}$ for all s, which implies

$$
\|\mathbf{\Phi}(\mathbf{V})-\boldsymbol{\Phi}(\mathbf{U})\|_{\infty} \leq \gamma\|\mathbf{V}-\mathbf{U}\|_{\infty}
$$

that is the γ-Lipschitz property of $\boldsymbol{\Phi}$. Now, by Bellman equations (14.7), $\mathbf{V}^{*}=$ $\boldsymbol{\Phi}\left(\mathbf{V}^{*}\right)$, thus for any $n \in \mathbb{N}$,

$$
\left\|\mathbf{V}^{*}-\mathbf{V}_{n+1}\right\|_{\infty}=\left\|\boldsymbol{\Phi}\left(\mathbf{V}^{*}\right)-\boldsymbol{\Phi}\left(\mathbf{V}_{n}\right)\right\|_{\infty} \leq \gamma\left\|\mathbf{V}^{*}-\mathbf{V}_{n}\right\|_{\infty} \leq \gamma^{n+1}\left\|\mathbf{V}^{*}-\mathbf{V}_{0}\right\|_{\infty}
$$

which proves the convergence of the sequence to \mathbf{V}^{*} since $\gamma \in(0,1)$.
The ϵ-optimality of the value returned by the algorithm can be shown as follows. By the triangle inequality and the γ-Lipschitz property of $\boldsymbol{\Phi}$, for any $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\mathbf{V}^{*}-\mathbf{V}_{n+1}\right\|_{\infty} & \leq\left\|\mathbf{V}^{*}-\boldsymbol{\Phi}\left(\mathbf{V}_{n+1}\right)\right\|_{\infty}+\left\|\boldsymbol{\Phi}\left(\mathbf{V}_{n+1}\right)-\mathbf{V}_{n+1}\right\|_{\infty} \\
& =\left\|\boldsymbol{\Phi}\left(\mathbf{V}^{*}\right)-\boldsymbol{\Phi}\left(\mathbf{V}_{n+1}\right)\right\|_{\infty}+\left\|\boldsymbol{\Phi}\left(\mathbf{V}_{n+1}\right)-\boldsymbol{\Phi}\left(\mathbf{V}_{n}\right)\right\|_{\infty} \\
& \leq \gamma\left\|\mathbf{V}^{*}-\mathbf{V}_{n+1}\right\|_{\infty}+\gamma\left\|\mathbf{V}_{n+1}-\mathbf{V}_{n}\right\|_{\infty}
\end{aligned}
$$

Thus, if \mathbf{V}_{n+1} is the policy value returned by the algorithm, we have

$$
\left\|\mathbf{V}^{*}-\mathbf{V}_{n+1}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|\mathbf{V}_{n+1}-\mathbf{V}_{n}\right\|_{\infty} \leq \epsilon
$$

The convergence of the algorithm is in $O\left(\log \frac{1}{\epsilon}\right)$ number of iterations. Indeed, observe that

$$
\left\|\mathbf{V}_{n+1}-\mathbf{V}_{n}\right\|_{\infty}=\left\|\boldsymbol{\Phi}\left(\mathbf{V}_{n}\right)-\boldsymbol{\Phi}\left(\mathbf{V}_{n-1}\right)\right\|_{\infty} \leq \gamma\left\|\mathbf{V}_{n}-\mathbf{V}_{n-1}\right\|_{\infty} \leq \gamma^{n}\left\|\boldsymbol{\Phi}\left(\mathbf{V}_{0}\right)-\mathbf{V}_{0}\right\|_{\infty}
$$

Thus, if n is the largest integer such that $\frac{(1-\gamma) \epsilon}{\gamma} \leq\left\|\mathbf{V}_{n+1}-\mathbf{V}_{n}\right\|_{\infty}$, it must verify
space, a β-contracting function f admits a fixed point: any sequence $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converges to some x with $f(x)=x . \mathbb{R}^{N}, N \geq 1$, or, more generally, any finite-dimensional vector space, is a complete metric space.

Figure 14.5 Example of MDP with two states. The state set is reduced to $S=\{1,2\}$ and the action set to $A=\{a, b, c, d\}$. Only transitions with non-zero probabilities are represented. Each transition is labeled with the action taken followed by a pair $[p, r]$ after a slash separator, where p is the probability of the transition and r the expected reward for taking that transition.
$\frac{(1-\gamma) \epsilon}{\gamma} \leq \gamma^{n}\left\|\mathbf{\Phi}\left(\mathbf{V}_{0}\right)-\mathbf{V}_{0}\right\|_{\infty}$ and therefore $n \leq O\left(\log \frac{1}{\epsilon}\right) .^{2}$
Figure 14.5 shows a simple example of MDP with two states. The iterated values of these states calculated by the algorithm for that MDP are given by

$$
\begin{aligned}
& \mathbf{V}_{n+1}(1)=\max \left\{2+\gamma\left(\frac{3}{4} \mathbf{V}_{n}(1)+\frac{1}{4} \mathbf{V}_{n}(2)\right), 2+\gamma \mathbf{V}_{n}(2)\right\} \\
& \mathbf{V}_{n+1}(2)=\max \left\{3+\gamma \mathbf{V}_{n}(1), 2+\gamma \mathbf{V}_{n}(2)\right\} .
\end{aligned}
$$

For $\mathbf{V}_{0}(1)=-1, \mathbf{V}_{0}(2)=1$, and $\gamma=1 / 2$, we obtain $\mathbf{V}_{1}(1)=\mathbf{V}_{1}(2)=5 / 2$. Thus, both states seem to have the same policy value initially. However, by the fifth iteration, $\mathbf{V}_{5}(1)=4.53125, \mathbf{V}_{5}(2)=5.15625$ and the algorithm quickly converges to the optimal values $\mathbf{V}^{*}(1)=14 / 3$ and $\mathbf{V}^{*}(2)=16 / 3$ showing that state 2 has a higher optimal value.

14.4.2 Policy iteration

An alternative algorithm for determining the best policy consists of using policy evaluations, which can be achieved via a matrix inversion, as shown by theorem 14.1. The pseudocode of the algorithm known as policy iteration algorithm is given in figure 14.6. Starting with an arbitrary action policy π_{0}, the algorithm repeatedly computes the value of the current policy π via that matrix inversion and greedily selects the new policy as the one maximizing the right-hand side of the Bellman equations (14.9).

The following theorem proves the convergence of the policy iteration algorithm.

Theorem 14.3

[^1]```
PolicyIteration \(\left(\pi_{0}\right)\)
 \(\pi \leftarrow \pi_{0} \quad \triangleright \pi_{0}\) arbitrary policy
 \(\pi^{\prime} \leftarrow \mathrm{NIL}\)
 while (\(\pi \neq \pi^{\prime}\)) do
 \(\mathbf{V} \leftarrow \mathbf{V}_{\pi} \quad \triangleright\) policy evaluation: solve \(\left(\mathbf{I}-\gamma \mathbf{P}_{\pi}\right) \mathbf{V}=\mathbf{R}_{\pi}\).
 \(\pi^{\prime} \leftarrow \pi\)
 \(\pi \leftarrow \operatorname{argmax}_{\pi}\left\{\mathbf{R}_{\pi}+\gamma \mathbf{P}_{\pi} \mathbf{V}\right\} \quad \triangleright\) greedy policy improvement.
 return \(\pi\)
```

Figure 14.6 Policy iteration algorithm.

Let $\left(\mathbf{V}_{n}\right)_{n \in \mathbb{N}}$ be the sequence of policy values computed by the algorithm, then, for any $n \in \mathbb{N}$, the following inequalities hold:

$$
\begin{equation*}
\mathbf{V}_{n} \leq \mathbf{V}_{n+1} \leq \mathbf{V}^{*} \tag{14.10}
\end{equation*}
$$

Proof Let $\pi_{n+1}$ be the policy improvement at the $n$th iteration of the algorithm. We first show that $\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right)^{-1}$ preserves ordering, that is, for any column matrices $\mathbf{X}$ and $\mathbf{Y}$ in $\mathbb{R}^{|S|}$, if $(\mathbf{Y}-\mathbf{X}) \geq \mathbf{0}$, then $\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right)^{-1}(\mathbf{Y}-\mathbf{X}) \geq \mathbf{0}$. As shown in the proof of theorem 14.1, $\|\gamma \mathbf{P}\|_{\infty}=\gamma<1$. Since the radius of convergence of the power series $(1-x)^{-1}$ is one, we can use its expansion and write

$$
\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right)^{-1}=\sum_{k=0}^{\infty}\left(\gamma \mathbf{P}_{\pi_{n+1}}\right)^{k}
$$

Thus, if $\mathbf{Z}=(\mathbf{Y}-\mathbf{X}) \geq \mathbf{0}$, then $\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right)^{-1} \mathbf{Z}=\sum_{k=0}^{\infty}\left(\gamma \mathbf{P}_{\pi_{n+1}}\right)^{k} \mathbf{Z} \geq \mathbf{0}$, since the entries of matrix $\mathbf{P}_{\pi_{n+1}}$ and its powers are all non-negative as well as those of Z.

Now, by definition of $\pi_{n+1}$, we have

$$
\mathbf{R}_{\pi_{n+1}}+\gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_{n} \geq \mathbf{R}_{\pi_{n}}+\gamma \mathbf{P}_{\pi_{n}} \mathbf{V}_{n}=\mathbf{V}_{n}
$$

which shows that $\mathbf{R}_{\pi_{n+1}} \geq\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right) \mathbf{V}_{n}$. Since $\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right)^{-1}$ preserves ordering, this implies that $\mathbf{V}_{n+1}=\left(\mathbf{I}-\gamma \mathbf{P}_{\pi_{n+1}}\right)^{-1} \mathbf{R}_{\pi_{n+1}} \geq \mathbf{V}_{n}$, which concludes the proof of the theorem.

Note that two consecutive policy values can be equal only at the last iteration of the algorithm. The total number of possible policies is $|A|^{|S|}$, thus this constitutes a straightforward upper bound on the maximal number of iterations. Better upper
bounds of the form $O\left(\frac{|A|^{|S|}}{|S|}\right)$ are known for this algorithm.
For the simple MDP shown by figure 14.5 , let the initial policy $\pi_{0}$ be defined by $\pi_{0}(1)=b, \pi_{0}(2)=c$. Then, the system of linear equations for evaluating this policy is

$$
\left\{\begin{array}{l}
V_{\pi_{0}}(1)=1+\gamma V_{\pi_{0}}(2) \\
V_{\pi_{0}}(2)=2+\gamma V_{\pi_{0}}(2)
\end{array}\right.
$$

which gives $V_{\pi_{0}}(1)=\frac{1+\gamma}{1-\gamma}$ and $V_{\pi_{0}}(2)=\frac{2}{1-\gamma}$.

## Theorem 14.4

Let $\left(\mathbf{U}_{n}\right)_{n \in \mathbb{N}}$ be the sequence of policy values generated by the value iteration algorithm, and $\left(\mathbf{V}_{n}\right)_{n \in \mathbb{N}}$ the one generated by the policy iteration algorithm. If $\mathbf{U}_{0}=\mathbf{V}_{0}$, then,

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \mathbf{U}_{n} \leq \mathbf{V}_{n} \leq \mathbf{V}^{*} \tag{14.11}
\end{equation*}
$$

Proof We first show that the function $\boldsymbol{\Phi}$ previously introduced is monotonic. Let $\mathbf{U}$ and $\mathbf{V}$ be such that $\mathbf{U} \leq \mathbf{V}$ and let $\pi$ be the policy such that $\boldsymbol{\Phi}(\mathbf{U})=\mathbf{R}_{\pi}+\gamma \mathbf{P}_{\pi} \mathbf{U}$. Then,

$$
\boldsymbol{\Phi}(\mathbf{U}) \leq \mathbf{R}_{\pi}+\gamma \mathbf{P}_{\pi} \mathbf{V} \leq \max _{\pi^{\prime}}\left\{\mathbf{R}_{\pi^{\prime}}+\gamma \mathbf{P}_{\pi^{\prime}} \mathbf{V}\right\}=\boldsymbol{\Phi}(\mathbf{V})
$$

The proof is by induction on $n$. Assume that $\mathbf{U}_{n} \leq \mathbf{V}_{n}$, then by the monotonicity of $\boldsymbol{\Phi}$, we have

$$
\mathbf{U}_{n+1}=\boldsymbol{\Phi}\left(\mathbf{U}_{n}\right) \leq \boldsymbol{\Phi}\left(\mathbf{V}_{n}\right)=\max _{\pi}\left\{\mathbf{R}_{\pi}+\gamma \mathbf{P}_{\pi} \mathbf{V}_{n}\right\}
$$

Let $\pi_{n+1}$ be the maximizing policy, that is, $\pi_{n+1}=\operatorname{argmax}_{\pi}\left\{\mathbf{R}_{\pi}+\gamma \mathbf{P}_{\pi} \mathbf{V}_{n}\right\}$. Then,

$$
\boldsymbol{\Phi}\left(\mathbf{V}_{n}\right)=\mathbf{R}_{\pi_{n+1}}+\gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_{n} \leq \mathbf{R}_{\pi_{n+1}}+\gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_{n+1}=\mathbf{V}_{n+1}
$$

and thus $\mathbf{U}_{n+1} \leq \mathbf{V}_{n+1}$.
The theorem shows that the policy iteration algorithm converges in a smaller number of iterations than the value iteration algorithm due to the optimal policy. But, each iteration of the policy iteration algorithm requires computing a policy value, that is, solving a system of linear equations, which is more expensive to compute that an iteration of the value iteration algorithm.

### 14.4.3 Linear programming

An alternative formulation of the optimization problem defined by the Bellman equations (14.7) is via linear programming (LP), that is an optimization prob-
lem with a linear objective function and linear constraints. LPs admit (weakly) polynomial-time algorithmic solutions. There exist a variety of different methods for solving relative large LPs in practice, using the simplex method, interior-point methods, or a variety of special-purpose solutions. All of these methods could be applied in this context.

By definition, the equations (14.7) are each based on a maximization. These maximizations are equivalent to seeking to minimize all elements of $\{V(s): s \in S\}$ under the constraints $V(s) \geq \mathrm{E}[r(s, a)]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] V\left(s^{\prime}\right),(s \in S)$. Thus, this can be written as the following LP for any set of fixed positive weights $\alpha(s)>0$, $(s \in S)$ :

$$
\begin{array}{cl}
\min _{\mathbf{V}} & \sum_{s \in S} \alpha(s) V(s)  \tag{14.12}\\
\text { subject to } & \forall s \in S, \forall a \in A, V(s) \geq \mathrm{E}[r(s, a)]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] V\left(s^{\prime}\right)
\end{array}
$$

where $\boldsymbol{\alpha}>\mathbf{0}$ is the vector with the $s$ th component equal to $\alpha(s) .{ }^{3}$ To make each coefficient $\alpha(s)$ interpretable as a probability, we can further add the constraints that $\sum_{s \in S} \alpha(s)=1$. The number of rows of this LP is $|S||A|$ and its number of columns $|S|$. The complexity of the solution techniques for LPs is typically more favorable in terms of the number of rows than the number of columns. This motivates a solution based on the equivalent dual formulation of this LP which can be written as

$$
\begin{align*}
\max _{\mathbf{x}} & \sum_{s \in S, a \in A} \mathrm{E}[r(s, a)] x(s, a)  \tag{14.13}\\
\text { subject to } & \forall s \in S, \sum_{a \in A} x\left(s^{\prime}, a\right)=\alpha\left(s^{\prime}\right)+\gamma \sum_{s \in S, a \in A} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] x\left(s^{\prime}, a\right) \\
& \forall s \in S, \forall a \in A, x(s, a) \geq 0
\end{align*}
$$

and for which the number of rows is only $|S|$ and the number of columns $|S||A|$. Here $x(s, a)$ can be interpreted as the probability of being in state $s$ and taking action $a$.

### 14.5 Learning algorithms

This section considers the more general scenario where the environment model of an MDP, that is the transition and reward probabilities, is unknown. This matches

[^2]many realistic applications of reinforcement learning where, for example, a robot is placed in an environment that it needs to explore in order to reach a specific goal.

How can an agent determine the best policy in this context? Since the environment models are not known, he may seek to learn them by estimating transition or reward probabilities. To do so, as in the standard case of supervised learning, the agent needs some amount of training information. In the context of reinforcement learning with MDPs, the training information is the sequence of immediate rewards the agent receives based on the actions he has taken.

There are two main learning approaches that can be adopted. One known as the model-free approach consists of learning an action policy directly. Another one, a model-based approach, consists of first learning the environment model, and then use that to learn a policy. The Q-learning algorithm we present for this problem is widely adopted in reinforcement learning and belongs to the family of model-free approaches.

The estimation and algorithmic methods adopted for learning in reinforcement learning are closely related to the concepts and techniques in stochastic approximation. Thus, we start by introducing several useful results of this field that will be needed for the proofs of convergence of the reinforcement learning algorithms presented

### 14.5.1 Stochastic approximation

Stochastic approximation methods are iterative algorithms for solving optimization problems whose objective function is defined as the expectation of some random variable, or to find the fixed point of a function $H$ that is accessible only through noisy observations. These are precisely the type of optimization problems found in reinforcement learning. For example, for the Q-learning algorithm we will describe, the optimal state-action value function $Q^{*}$ is the fixed point of some function $H$ that is defined as an expectation and thus not directly accessible.

We start with a basic result whose proof and related algorithm show the flavor of more complex ones found in stochastic approximation. The theorem is a generalization of a result known as the strong law of large numbers. It shows that under some conditions on the coefficients, an iterative sequence of estimates $\mu_{m}$ converges almost surely (a.s.) to the mean of a bounded random variable.

Theorem 14.5 Mean estimation
Let $X$ be a random variable taking values in $[0,1]$ and let $x_{0}, \ldots, x_{m}$ be i.i.d. values of $X$. Define the sequence $\left(\mu_{m}\right)_{m \in \mathbb{N}}$ by

$$
\begin{equation*}
\mu_{m+1}=\left(1-\alpha_{m}\right) \mu_{m}+\alpha_{m} x_{m} \tag{14.14}
\end{equation*}
$$

with $\mu_{0}=x_{0}, \alpha_{m} \in[0,1], \sum_{m \geq 0} \alpha_{m}=+\infty$ and $\sum_{m \geq 0} \alpha_{m}^{2}<+\infty$. Then,

$$
\begin{equation*}
\mu_{m} \xrightarrow{a . s} \mathrm{E}[X] . \tag{14.15}
\end{equation*}
$$

Proof We give the proof of the $L_{2}$ convergence. The a.s. convergence is shown later for a more general theorem. By the independence assumption, for $m \geq 0$,

$$
\begin{equation*}
\operatorname{Var}\left[\mu_{m+1}\right]=\left(1-\alpha_{m}\right)^{2} \operatorname{Var}\left[\mu_{m}\right]+\alpha_{m}^{2} \operatorname{Var}\left[x_{m}\right] \leq\left(1-\alpha_{m}\right) \operatorname{Var}\left[\mu_{m}\right]+\alpha_{m}^{2} \tag{14.16}
\end{equation*}
$$

Let $\epsilon>0$ and suppose that there exists $N \in \mathbb{N}$ such that for all $m \geq N, \operatorname{Var}\left[\mu_{m}\right] \geq \epsilon$. Then, for $m \geq N$,

$$
\operatorname{Var}\left[\mu_{m+1}\right] \leq \operatorname{Var}\left[\mu_{m}\right]-\alpha_{m} \operatorname{Var}\left[\mu_{m}\right]+\alpha_{m}^{2} \leq \operatorname{Var}\left[\mu_{m}\right]-\alpha_{m} \epsilon+\alpha_{m}^{2}
$$

which implies, by reapplying this inequality, that

$$
\operatorname{Var}\left[\mu_{m+N}\right] \leq \underbrace{\operatorname{Var}\left[\mu_{N}\right]-\epsilon \sum_{n=N}^{m+N} \alpha_{n}+\sum_{n=N}^{m+N} \alpha_{n}^{2}}_{\rightarrow-\infty \text { when } m \rightarrow \infty}
$$

contradicting $\operatorname{Var}\left[\mu_{m+N}\right] \geq 0$. Thus, this contradicts the existence of such an integer $N$. Therefore, for all $N \in \mathbb{N}$, there exists $m_{0} \geq N$ such that $\operatorname{Var}\left[\mu_{m_{0}}\right] \leq \epsilon$.

Choose $N$ large enough so that for all $m \geq N$, the inequality $\alpha_{m} \leq \epsilon$ holds. This is possible since the sequence $\left(\alpha_{m}^{2}\right)_{m \in \mathbb{N}}$ and thus $\left(\alpha_{m}\right)_{m \in \mathbb{N}}$ converges to zero in view of $\sum_{m \geq 0} \alpha_{m}^{2}<+\infty$. We will show by induction that for any $m \geq m_{0}, \operatorname{Var}\left[\mu_{m}\right] \leq \epsilon$, which implies the statement of the theorem.

Assume that $\operatorname{Var}\left[\mu_{m}\right] \leq \epsilon$ for some $m \geq m_{0}$. Then, using this assumption, inequality 14.16 , and the fact that $\alpha_{m} \leq \epsilon$, the following inequality holds:

$$
\operatorname{Var}\left[\mu_{m+1}\right] \leq\left(1-\alpha_{m}\right) \epsilon+\epsilon \alpha_{m}=\epsilon
$$

Thus, this proves that $\lim _{m \rightarrow+\infty} \operatorname{Var}\left[\mu_{m}\right]=0$, that is the $L_{2}$ convergence of $\mu_{m}$ to $\mathrm{E}[X]$.

Note that the hypotheses of the theorem related to the sequence $\left(\alpha_{m}\right)_{m \in \mathbb{N}}$ hold in particular when $\alpha_{m}=\frac{1}{m}$. The special case of the theorem with this choice of $\alpha_{m}$ coincides with the strong law of large numbers. This result has tight connections with the general problem of stochastic optimization.

Stochastic optimization is the general problem of finding the solution to the equation

$$
\mathbf{x}=H(\mathbf{x})
$$

where $\mathbf{x} \in \mathbb{R}^{N}$, when

- $H(x)$ cannot be computed, for example, because $H$ is not accessible or because the cost of its computation is prohibitive;
- but an i.i.d. sample of $m$ noisy observations $H\left(\mathbf{x}_{i}\right)+\mathbf{w}_{i}$ are available, $i \in[1, m]$, where the noise random variable $\mathbf{w}$ has expectation zero: $\mathrm{E}[\mathbf{w}]=\mathbf{0}$.

This problem arises in a variety of different contexts and applications. As we shall see, it is directly related to the learning problem for MDPs.

One general idea for solving this problem is to use an iterative method and define a sequence $\left(\mathbf{x}_{t}\right)_{t \in \mathbb{N}}$ in a way similar to what is suggested by theorem 14.5:

$$
\begin{align*}
\mathbf{x}_{t+1} & =\left(1-\alpha_{t}\right) \mathbf{x}_{t}+\alpha_{t}\left[H\left(\mathbf{x}_{t}\right)+\mathbf{w}_{t}\right]  \tag{14.17}\\
& =\mathbf{x}_{t}+\alpha_{t}\left[H\left(\mathbf{x}_{t}\right)+\mathbf{w}_{t}-\mathbf{x}_{t}\right] \tag{14.18}
\end{align*}
$$

where $\left(\alpha_{t}\right)_{t \in \mathbb{N}}$ follow conditions similar to those assumed in theorem 14.5. More generally, we consider sequences defined via

$$
\begin{equation*}
\mathbf{x}_{t+1}=\mathbf{x}_{t}+\alpha_{t} D\left(\mathbf{x}_{t}, \mathbf{w}_{t}\right) \tag{14.19}
\end{equation*}
$$

where $D$ is a function mapping $\mathbb{R}^{N} \times \mathbb{R}^{N}$ to $\mathbb{R}^{N}$. There are many different theorems guaranteeing the convergence of this sequence under various assumptions. We will present one of the most general forms of such theorems, which relies on the following general result.

## Theorem 14.6 Supermartingale convergence

Let $\left(X_{t}\right)_{t \in \mathbb{N}},\left(Y_{t}\right)_{t \in \mathbb{N}}$, and $\left(Z_{t}\right)_{t \in \mathbb{N}}$ be sequences of non-negative random variables such that $\sum_{t=0}^{\infty} Y_{t}<\infty$. Let $\mathcal{F}_{t}$ denote all the information for $t^{\prime} \leq t: \mathcal{F}_{t}=$ $\left\{\left(X_{t^{\prime}}\right)_{t^{\prime} \leq t},\left(Y_{t^{\prime}}\right)_{t^{\prime} \leq t},\left(Z_{t^{\prime}}\right)_{t^{\prime} \leq t}\right\}$. Then, if $\mathrm{E}\left[X_{t+1} \mid \mathcal{F}_{t}\right] \leq X_{t}+Y_{t}-Z_{t}$, the following holds:

- $X_{t}$ converges to a limit (with probability one).
- $\sum_{t=0}^{\infty} Z_{t}<\infty$.

The following is one of the most general forms of such theorems.

## Theorem 14.7

Let $D$ be a function mapping $\mathbb{R}^{N} \times \mathbb{R}^{N}$ to $\mathbb{R}^{N}$, $\left(\mathbf{x}_{t}\right)_{t \in \mathbb{N}}$ and $\left(\mathbf{w}_{t}\right)_{t \in \mathbb{N}}$ two sequences in $\mathbb{R}^{N}$, and $\left(\alpha_{t}\right)_{t \in \mathbb{N}}$ a sequence of real numbers with $\mathbf{x}_{t+1}=\mathbf{x}_{t}+\alpha_{t} D\left(\mathbf{x}_{t}, \mathbf{w}_{t}\right)$. Let $\mathcal{F}_{t}$ denote the entire history for $t^{\prime} \leq t$, that is: $\mathcal{F}_{t}=\left\{\left(\mathbf{x}_{t^{\prime}}\right)_{t^{\prime} \leq t},\left(\mathbf{w}_{t^{\prime}}\right)_{t^{\prime} \leq t},\left(\alpha_{t^{\prime}}\right)_{t^{\prime} \leq t}\right\}$.

Let $\Psi$ denote $\mathbf{x} \rightarrow \frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2}^{2}$ for some $\mathbf{x}^{*} \in \mathbb{R}^{N}$ and assume that $D$ and $(\alpha)_{t \in \mathbb{N}}$ verify the following conditions:

- $\exists K_{1}, K_{2} \in \mathbb{R}: \mathrm{E}\left[\left\|D\left(\mathbf{x}_{t}, \mathbf{w}_{t}\right)\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] \leq K_{1}+K_{2} \Psi\left(\mathbf{x}_{t}\right) ;$
- $\exists c \geq 0: \nabla \Psi\left(\mathbf{x}_{t}\right)^{\top} \mathrm{E}\left[D\left(\mathbf{x}_{t}, \mathbf{w}_{t}\right) \mid \mathcal{F}_{t}\right] \leq-c \Psi\left(\mathbf{x}_{t}\right)$;
- $\alpha_{t}>0, \sum_{t=0}^{\infty} \alpha_{t}=\infty, \sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$.

Then, the sequence $\mathbf{x}_{t}$ converges almost surely to $\mathbf{x}^{*}$ :

$$
\begin{equation*}
\mathbf{x}_{t} \xrightarrow{a . s} \mathbf{x}^{*} . \tag{14.20}
\end{equation*}
$$

Proof Since function $\Psi$ is quadratic, a Taylor expansion gives

$$
\Psi\left(\mathbf{x}_{t+1}\right)=\Psi\left(\mathbf{x}_{t}\right)+\nabla \Psi\left(\mathbf{x}_{t}\right)^{\top}\left(\mathbf{x}_{t+1}-\mathbf{x}_{t}\right)+\frac{1}{2}\left(\mathbf{x}_{t+1}-\mathbf{x}_{t}\right)^{\top} \nabla^{2} \Psi\left(\mathbf{x}_{t}\right)\left(\mathbf{x}_{t+1}-\mathbf{x}_{t}\right)
$$

Thus,

$$
\begin{aligned}
\mathrm{E}\left[\Psi\left(\mathbf{x}_{t+1}\right) \mid \mathcal{F}_{t}\right] & =\Psi\left(\mathbf{x}_{t}\right)+\alpha_{t} \nabla \Psi\left(\mathbf{x}_{t}\right)^{\top} \mathrm{E}\left[D\left(\mathbf{x}_{t}, \mathbf{w}_{t}\right) \mid \mathcal{F}_{t}\right]+\frac{\alpha_{t}^{2}}{2} \mathrm{E}\left[\left\|D\left(\mathbf{x}_{t}, \mathbf{w}_{t}\right)\right\|^{2} \mid \mathcal{F}_{t}\right] \\
& \leq \Psi\left(\mathbf{x}_{t}\right)-\alpha_{t} c \Psi\left(\mathbf{x}_{t}\right)+\frac{\alpha_{t}^{2}}{2}\left(K_{1}+K_{2} \Psi\left(\mathbf{x}_{t}\right)\right) \\
& =\Psi\left(\mathbf{x}_{t}\right)+\frac{\alpha_{t}^{2} K_{1}}{2}-\left(\alpha_{t} c-\frac{\alpha_{t}^{2} K_{2}}{2}\right) \Psi\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

Since by assumption the series $\sum_{t=0}^{\infty} \alpha_{t}^{2}$ is convergent, $\left(\alpha_{t}^{2}\right)_{t}$ and thus $\left(\alpha_{t}\right)_{t}$ converges to zero. Therefore, for $t$ sufficiently large, the term $\left(\alpha_{t} c-\frac{\alpha_{t}^{2} K_{2}}{2}\right) \Psi\left(\mathbf{x}_{t}\right)$ has the sign of $\alpha_{t} c \Psi\left(\mathbf{x}_{t}\right)$ and is non-negative, since $\alpha_{t}>0, \Psi\left(\mathbf{x}_{t}\right) \geq 0$, and $c>0$. Thus, by the supermartingale convergence theorem $14.6, \Psi\left(\mathrm{x}_{t}\right)$ converges and $\sum_{t=0}^{\infty}\left(\alpha_{t} c-\frac{\alpha_{t}^{2} K_{2}}{2}\right) \Psi\left(\mathbf{x}_{t}\right)<\infty$. Since $\Psi\left(\mathbf{x}_{t}\right)$ converges and $\sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$, we have $\sum_{t=0}^{\infty} \frac{\alpha_{t}^{2} K_{2}}{2} \Psi\left(\mathbf{x}_{t}\right)<\infty$. But, since $\sum_{t=0}^{\infty} \alpha_{t}=\infty$, if the limit of $\Psi\left(\mathbf{x}_{t}\right)$ were non-zero, we would have $\sum_{t=0}^{\infty} \alpha_{t} c \Psi\left(\mathbf{x}_{t}\right)=\infty$. This implies that the limit of $\Psi\left(\mathbf{x}_{t}\right)$ is zero, that is $\lim _{t \rightarrow \infty}\left\|\mathbf{x}_{t}-\mathbf{x}^{*}\right\|_{2} \rightarrow 0$, which implies $\mathbf{x}_{t} \xrightarrow{\text { a.s }} \mathbf{x}^{*}$.

The following is another related result for which we do not present the full proof.

## Theorem 14.8

Let $\mathbf{H}$ be a function mapping $\mathbb{R}^{N}$ to $\mathbb{R}^{N}$, and $\left(\mathbf{x}_{t}\right)_{t \in \mathbb{N}},\left(\mathbf{w}_{t}\right)_{t \in \mathbb{N}}$, and $\left(\alpha_{t}\right)_{t \in \mathbb{N}}$ be three sequences in $\mathbb{R}^{N}$ with

$$
\forall s \in[1, N], \quad \mathbf{x}_{t+1}(s)=\mathbf{x}_{t}(s)+\alpha_{t}(s)\left[\mathbf{H}\left(\mathbf{x}_{t}\right)(s)-\mathbf{x}_{t}(s)+\mathbf{w}_{t}(s)\right]
$$

Let $\mathcal{F}_{t}$ denote the entire history for $t^{\prime} \leq t$, that is: $\mathcal{F}_{t}=\left\{\left(\mathbf{x}_{t^{\prime}}\right)_{t^{\prime} \leq t},\left(\mathbf{w}_{t^{\prime}}\right)_{t^{\prime} \leq t},\left(\alpha_{t^{\prime}}\right)_{t^{\prime} \leq t}\right\}$ and assume that the following conditions are met:

- $\exists K_{1}, K_{2} \in \mathbb{R}: \mathrm{E}\left[\mathbf{w}_{t}^{2}(s) \mid \mathcal{F}_{t}\right] \leq K_{1}+K_{2}\left\|\mathbf{x}_{t}\right\|^{2}$ for some norm $\|\cdot\|$;
- $\mathrm{E}\left[\mathbf{w}_{t} \mid \mathcal{F}_{t}\right]=0$;
- $\forall s \in[1, N], \sum_{t=0}^{\infty} \alpha_{t}=\infty, \sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$; and
- $H$ is $a\|\cdot\|_{\infty}$-contraction with fixed point $\mathbf{x}^{*}$.

Then, the sequence $\mathbf{x}_{t}$ converges almost surely to $\mathbf{x}^{*}$ :

$$
\begin{equation*}
\mathbf{x}_{t} \xrightarrow{a . s} \mathbf{x}^{*} . \tag{14.21}
\end{equation*}
$$

The next sections present several learning algorithms for MDPs with an unknown model.

### 14.5.2 $\mathrm{TD}(0)$ algorithm

This section presents an algorithm, $\mathrm{TD}(0)$ algorithm, for evaluating a policy in the case where the environment model is unknown. The algorithm is based on Bellman's linear equations giving the value of a policy $\pi$ (see proposition 14.1):

$$
\begin{aligned}
V_{\pi}(s) & =\mathrm{E}\left[r(s, \pi(s)]+\gamma \sum_{s^{\prime}} \operatorname{Pr}\left[s^{\prime} \mid s, \pi(s)\right] V_{\pi}\left(s^{\prime}\right)\right. \\
& =\underset{s^{\prime}}{\mathrm{E}}\left[r(s, \pi(s))+\gamma V_{\pi}\left(s^{\prime}\right) \mid s\right]
\end{aligned}
$$

However, here the probability distribution according to which this last expectation is defined is not known. Instead, the $\mathrm{TD}(0)$ algorithm consists of

- sampling a new state $s^{\prime}$; and
- updating the policy values according to the following, which justifies the name of the algorithm:

$$
\begin{align*}
V(s) & \leftarrow(1-\alpha) V(s)+\alpha\left[r(s, \pi(s))+\gamma V\left(s^{\prime}\right)\right] \\
& =V(s)+\alpha[\underbrace{r(s, \pi(s))+\gamma V\left(s^{\prime}\right)-V(s)}_{\text {temporal difference of } V \text { values }}] . \tag{14.22}
\end{align*}
$$

Here, the parameter $\alpha$ is a function of the number of visits to the state $s$.
The pseudocode of the algorithm is given above. The algorithm starts with an arbitrary policy value vector $\mathbf{V}_{0}$. An initial state is returned by SelectState at the beginning of each epoch. Within each epoch, the iteration continues until a final state is found. Within each iteration, action $\pi(s)$ is taken from the current state $s$ following policy $\pi$. The new state $s^{\prime}$ reached and the reward $r^{\prime}$ received are observed. The policy value of state $s$ is then updated according to the rule (14.22) and current state set to be $s^{\prime}$.

The convergence of the algorithm can be proven using theorem 14.8. We will give instead the full proof of the convergence of the Q-learning algorithm, for which that of $\mathrm{TD}(0)$ can be viewed as a special case.

```
\(\mathrm{TD}(0)()\)
 \(\mathbf{V} \leftarrow \mathbf{V}_{0} \triangleright\) initialization.
 for \(t \leftarrow 0\) to \(T\) do
 \(s \leftarrow \operatorname{SelectState}()\)
 for each step of epoch \(t\) do
 \(r^{\prime} \leftarrow \operatorname{Reward}(s, \pi(s))\)
 \(s^{\prime} \leftarrow \operatorname{NextState}(\pi, s)\)
 \(V(s) \leftarrow(1-\alpha) V(s)+\alpha\left[r^{\prime}+\gamma V\left(s^{\prime}\right)\right]\)
 \(s \leftarrow s^{\prime}\)
 return V
```


### 14.5.3 Q-learning algorithm

This section presents an algorithm for estimating the optimal state-action value function $Q^{*}$ in the case of an unknown model. Note that the optimal policy or policy value can be straightforwardly derived from $Q^{*}$ via: $\pi^{*}(s)=\operatorname{argmax}_{a \in A} Q^{*}(s, a)$ and $V^{*}(s)=\max _{a \in A} Q^{*}(s, a)$. To simplify the presentation, we will assume a deterministic reward function.

The Q-learning algorithm is based on the equations giving the optimal stateaction value function $Q^{*}$ (14.4):

$$
\begin{aligned}
Q^{*}(s, a) & =\mathrm{E}[r(s, a)]+\gamma \sum_{s^{\prime} \in S} \operatorname{Pr}\left[s^{\prime} \mid s, a\right] V^{*}\left(s^{\prime}\right) \\
& =\underset{s^{\prime}}{\mathrm{E}}\left[r(s, a)+\gamma \max _{a \in A} Q^{*}(s, a)\right]
\end{aligned}
$$

As for the policy values in the previous section, the distribution model is not known. Thus, the Q-learning algorithm consists of the following main steps:

- sampling a new state $s^{\prime}$; and
- updating the policy values according to the following:

$$
\begin{equation*}
Q(s, a) \leftarrow \alpha Q(s, a)+(1-\alpha)\left[r(s, a)+\gamma \max _{a^{\prime} \in A} Q\left(s^{\prime}, a^{\prime}\right)\right] . \tag{14.23}
\end{equation*}
$$

where the parameter $\alpha$ is a function of the number of visits to the state $s$.
The algorithm can be viewed as a stochastic formulation of the value iteration algorithm presented in the previous section. The pseudocode is given above. Within

```
Q-Learning \((\pi)\)
 \(Q \leftarrow Q_{0} \quad \triangleright\) initialization, e.g., \(Q_{0}=0\).
 for \(t \leftarrow 0\) to \(T\) do
 \(s \leftarrow \operatorname{SelectState}()\)
 for each step of epoch \(t\) do
 \(a \leftarrow \operatorname{SelectAction}(\pi, s) \triangleright \quad\) policy \(\pi\) derived from \(Q\), e.g., \(\epsilon\)-greedy.
 \(r^{\prime} \leftarrow \operatorname{Reward}(s, a)\)
 \(s^{\prime} \leftarrow \operatorname{NextState}(s, a)\)
 \(Q(s, a) \leftarrow Q(s, a)+\alpha\left[r^{\prime}+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right]\)
 \(s \leftarrow s^{\prime}\)
 return \(Q\)
```

each epoch, an action is selected from the current state $s$ using a policy $\pi$ derived from $Q$. The choice of the policy $\pi$ is arbitrary so long as it guarantees that every pair $(s, a)$ is visited infinitely many times. The reward received and the state $s^{\prime}$ observed are then used to update $Q$ following (14.23).

## Theorem 14.9

Consider a finite $M D P$. Assume that for all $s \in S$ and $a \in A, \sum_{t=0}^{\infty} \alpha_{t}(s, a)=\infty$, and $\sum_{t=0}^{\infty} \alpha_{t}^{2}(s, a)<\infty$ with $\alpha_{t}(s, a) \in[0,1]$. Then, the $Q$-learning algorithm converges to the optimal value $Q^{*}$ (with probability one).

Note that the conditions on $\alpha_{t}(s, a)$ impose that each state-action pair is visited infinitely many times.

Proof Let $\left(Q_{t}(s, a)\right)_{t \geq 0}$ denote the sequence of state-action value functions at $(s, a) \in S \times A$ generated by the algorithm. By definition of the Q -learning updates,

$$
Q_{t+1}\left(s_{t}, a_{t}\right)=Q_{t}\left(s_{t}, a_{t}\right)+\alpha\left[r\left(s_{t}, a_{t}\right)+\gamma \max _{a^{\prime}} Q_{t}\left(s_{t+1}, a^{\prime}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right]
$$

This can be rewritten as the following for all $s \in S$ and $a \in A$ :

$$
\begin{align*}
Q_{t+1}(s, a)= & Q_{t}(s, a)+\alpha_{t}(s, a)\left[r(s, a)+\gamma \underset{\left.s^{\prime} \sim \operatorname{Pr} \cdot \mid s, a\right]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)\right]-Q_{t}(s, a)\right] \\
& +\gamma \alpha_{t}(s, a)\left[\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)-\underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)\right]\right], \tag{14.24}
\end{align*}
$$

if we define $\alpha_{t}(s, a)$ as 0 if $(s, a) \neq\left(s_{t}, a_{t}\right)$ and $\alpha_{t}\left(s_{t}, a_{t}\right)$ otherwise. Now, let $\mathbf{Q}_{t}$
denote the vector with components $Q_{t}(s, a), \mathbf{w}_{t}$ the vector whose $s^{\prime}$ th is

$$
w_{t}\left(s^{\prime}\right)=\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)-\underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)\right]
$$

and $\mathbf{H}\left(\mathbf{Q}_{t}\right)$ the vector with components $\mathbf{H}\left(\mathbf{Q}_{t}\right)(x, a)$ defined by

$$
\mathbf{H}\left(\mathbf{Q}_{t}\right)(x, a)=r(s, a)+\gamma \underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Then, in view of (14.24),
$\forall(s, a) \in S \times A, \quad \mathbf{Q}_{t+1}(s, a)=\mathbf{Q}_{t}(s, a)+\alpha_{t}(s, a)\left[\mathbf{H}\left(\mathbf{Q}_{t}\right)(s, a)-\mathbf{Q}_{t}(s, a)+\gamma \mathbf{w}_{t}(s)\right]$.
We now show that the hypotheses of theorem 14.8 hold for $\mathbf{Q}_{t}$ and $\mathbf{w}_{t}$, which will imply the convergence of $\mathbf{Q}_{t}$ to $\mathbf{Q}^{*}$. The conditions on $\alpha_{t}$ hold by assumption. By definition of $\mathbf{w}_{t}, \mathrm{E}\left[\mathbf{w}_{t} \mid \mathcal{F}_{t}\right]=0$. Also, for any $s^{\prime} \in S$,

$$
\begin{aligned}
\left|\mathbf{w}_{t}\left(s^{\prime}\right)\right| & \leq \max _{a^{\prime}}\left|Q_{t}\left(s^{\prime}, a^{\prime}\right)\right|+\left|\underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)\right]\right| \\
& \leq 2 \max _{s^{\prime}}\left|\max _{a^{\prime}} Q_{t}\left(s^{\prime}, a^{\prime}\right)\right|=2\left\|\mathbf{Q}_{t}\right\|_{\infty}
\end{aligned}
$$

Thus, $\mathrm{E}\left[\mathbf{w}_{t}^{2}(s) \mid \mathcal{F}_{t}\right] \leq 4\left\|\mathbf{Q}_{t}\right\|_{\infty}^{2}$. Finally, $\mathbf{H}$ is a $\gamma$-contraction for $\|\cdot\|_{\infty}$ since for any $\mathbf{Q}_{1}^{\prime}, \mathbf{Q}_{2}^{\prime \prime} \in \mathbb{R}^{|S| \times|A|}$, and $(s, a) \in S \times A$, we can write

$$
\begin{aligned}
\left|\mathbf{H}\left(\mathbf{Q}_{2}\right)(x, a)-\mathbf{H}\left(\mathbf{Q}_{1}^{\prime}\right)(x, a)\right| & =\left|\gamma \underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{2}\left(s^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q_{1}\left(s^{\prime}, a^{\prime}\right)\right]\right| \\
& \leq \gamma \underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}}\left[\max _{a^{\prime}} Q_{2}\left(s^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q_{1}\left(s^{\prime}, a^{\prime}\right) \mid\right] \\
& \leq \gamma \underset{s^{\prime} \sim \operatorname{Pr}[\cdot \mid s, a]}{\mathrm{E}} \max _{a^{\prime}}\left[\left|Q_{2}\left(s^{\prime}, a^{\prime}\right)-Q_{1}\left(s^{\prime}, a^{\prime}\right)\right|\right] \\
& \leq \gamma \max _{s^{\prime}} \max _{a^{\prime}}\left[\left|Q_{2}\left(s^{\prime}, a^{\prime}\right)-Q_{1}\left(s^{\prime}, a^{\prime}\right)\right|\right] \\
& =\gamma\left\|\mathbf{Q}_{2}^{\prime \prime}-\mathbf{Q}_{1}^{\prime}\right\|_{\infty} .
\end{aligned}
$$

Since $\mathbf{H}$ is a contraction, it admits a fixed point $\mathbf{Q}^{*}: \mathbf{H}\left(\mathbf{Q}^{*}\right)=\mathbf{Q}^{*}$.
The choice of the policy $\pi$ according to which an action $a$ is selected (line 5) is not specified by the algorithm and, as already indicated, the theorem guarantees the convergence of the algorithm for an arbitrary policy so long as it ensures that every pair $(s, a)$ is visited infinitely many times. In practice, several natural choices are considered for $\pi$. One possible choice is the policy determined by the state-action value at time $t, Q_{t}$. Thus, the action selected from state $s$ is $\operatorname{argmax}_{a \in A} Q_{t}(s, a)$. But this choice typically does not guarantee that all actions are taken or that all states are visited. Instead, a standard choice in reinforcement learning is the so-called $\epsilon$ greedy policy, which consists of selecting with probability $(1-\epsilon)$ the greedy action
from state $s$, that is, $\operatorname{argmax}_{a \in A} Q_{t}(s, a)$, and with probability $\epsilon$ a random action from $s$, for some $\epsilon \in(0,1)$. Another possible choice is the so-called Boltzmann exploration, which, given the current state-action value $Q$, epoch $t \in[0, T]$, and current state $s$, consists of selecting action $a$ with the following probability:

$$
p_{t}(a \mid s, Q)=\frac{e^{\frac{Q(s, a)}{\tau_{t}}}}{\sum_{a^{\prime} \in A} e^{\frac{Q\left(s, a^{\prime}\right)}{\tau_{t}}}},
$$

where $\tau_{t}$ is the temperature. $\tau_{t}$ must be defined so that $\tau_{t} \rightarrow 0$ as $t \rightarrow \infty$, which ensures that for large values of $t$, the greedy action based on $Q$ is selected. This is natural, since as $t$ increases, we can expect $Q$ to be close to the optimal function. On the other hand, $\tau_{t}$ must be chosen so that it does not tend to 0 too fast to ensure that all actions are visited infinitely often. It can be chosen, for instance, as $1 / \log \left(n_{t}(s)\right)$, where $n_{t}(s)$ is the number of times $s$ has been visited up to epoch $t$.

Reinforcement learning algorithms include two components: a learning policy, which determines the action to take, and an update rule, which defines the new estimate of the optimal value function. For an off-policy algorithm, the update rule does not necessarily depend on the learning policy. Q-learning is an off-policy algorithm since its update rule (line 8 of the pseudocode) is based on the max operator and the comparison of all possible actions $a^{\prime}$, thus it does not depend on the policy $\pi$. In contrast, the algorithm presented in the next section, SARSA, is an on-policy algorithm.

### 14.5.4 SARSA

SARSA is also an algorithm for estimating the optimal state-value function in the case of an unknown model. The pseudocode is given in figure 14.7. The algorithm is in fact very similar to Q-learning, except that its update rule (line 9 of the pseudocode) is based on the action $a^{\prime}$ selected by the learning policy. Thus, SARSA is an on-policy algorithm, and its convergence therefore crucially depends on the learning policy. In particular, the convergence of the algorithm requires, in addition to all actions being selected infinitely often, that the learning policy becomes greedy in the limit. The proof of the convergence of the algorithm is nevertheless close to that of Q-learning.

The name of the algorithm derives from the sequence of instructions defining successively $s, a, r^{\prime}, s^{\prime}$, and $a^{\prime}$, and the fact that the update to the function $Q$ depends on the quintuple $\left(s, a, r^{\prime}, s^{\prime}, a\right)$.

```
\(\operatorname{SARSA}(\pi)\)
 \(Q \leftarrow Q_{0} \quad \triangleright\) initialization, e.g., \(Q_{0}=0\).
 for \(t \leftarrow 0\) to \(T\) do
 \(s \leftarrow\) SelectState()
 \(a \leftarrow \operatorname{Select} \operatorname{Action}(\pi(Q), s) \triangleright \quad\) policy \(\pi\) derived from \(Q\), e.g., \(\epsilon\)-greedy.
 5 for each step of epoch \(t\) do
 \(r^{\prime} \leftarrow \operatorname{Reward}(s, a)\)
 \(s^{\prime} \leftarrow \operatorname{NextState}(s, a)\)
 \(a^{\prime} \leftarrow \operatorname{Select} \operatorname{Action}\left(\pi(Q), s^{\prime}\right) \triangleright \quad\) policy \(\pi\) derived from \(Q\), e.g., \(\epsilon\)-greedy.
 \(Q(s, a) \leftarrow Q(s, a)+\alpha_{t}(s, a)\left[r^{\prime}+\gamma Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right]\)
 \(s \leftarrow s^{\prime}\)
 \(a \leftarrow a^{\prime}\)
 return \(Q\)
```

Figure 14.7 The SARSA algorithm.

### 14.5.5 $\mathrm{TD}(\lambda)$ algorithm

Both $\mathrm{TD}(0)$ and Q-learning algorithms are only based on immediate rewards. The idea of $\mathrm{TD}(\lambda)$ consists instead of using multiple steps ahead. Thus, for $n>1$ steps, we would have the update

$$
V(s) \leftarrow V(s)+\alpha\left(R_{t}^{n}-V(s)\right),
$$

where $R_{t}^{n}$ is defined by

$$
R_{t}^{n}=r_{t+1}+\gamma r_{t+2}+\ldots+\gamma^{n-1} r_{t+n}+\gamma^{n} V\left(s_{t+n}\right)
$$

How should $n$ be chosen? Instead of selecting a specific $n, \operatorname{TD}(\lambda)$ is based on a geometric distribution over all rewards $R_{t}^{n}$, that is, it uses $R_{t}^{\lambda}=(1-\lambda) \sum_{n=0}^{\infty} \lambda^{n} R_{t}^{n}$ instead of $R_{t}^{n}$ where $\lambda \in[0,1]$. Thus, the main update becomes

$$
V(s) \leftarrow V(s)+\alpha\left(R_{t}^{\lambda}-V(s)\right)
$$

The pseudocode of the algorithm is given above. For $\lambda=0$, the algorithm coincides with $\operatorname{TD}(0) . \lambda=1$ corresponds to the total future reward.

In the previous sections, we presented learning algorithms for an agent navigating

```
\(\operatorname{TD}(\lambda)()\)
\(\mathbf{V} \leftarrow \mathbf{V}_{0} \triangleright\) initialization.
\(\mathrm{e} \leftarrow 0\)
 for \(t \leftarrow 0\) to \(T\) do
 \(s \leftarrow \operatorname{SelectState}()\)
 for each step of epoch \(t\) do
 \(s^{\prime} \leftarrow \operatorname{NextState}(\pi, s)\)
 \(\delta \leftarrow r(s, \pi(s))+\lambda V\left(s^{\prime}\right)-V(s)\)
 \(e(s) \leftarrow \lambda e(s)+1\)
 for \(u \in S\) do
 if \(u \neq s\) then
 \(e(u) \leftarrow \gamma \lambda e(u)\)
 \(V(u) \leftarrow V(u)+\alpha \delta e(u)\)
 \(s \leftarrow s^{\prime}\)
 return \(V\)
```

in an unknown environment. The scenario faced in many practical applications is more challenging; often, the information the agent receives about the environment is uncertain or unreliable. Such problems can be modeled as partially observable Markov decision processes (POMDPs). POMDPs are defined by augmenting the definition of MDPs with an observation probability distribution depending on the action taken, the state reached, and the observation. The presentation of their model and solution techniques are beyond the scope of this material.

### 14.5.6 Large state space

In some cases in practice, the number of states or actions to consider for the environment may be very large. For example, the number of states in the game of backgammon is estimated to be over $10^{20}$. Thus, the algorithms presented in the previous section can become computationally impractical for such applications. More importantly, generalization becomes extremely difficult.

Suppose we wish to estimate the policy value $V_{\pi}(s)$ at each state $s$ using experience obtained using policy $\pi$. To cope with the case of large state spaces, we can map each state of the environment to $\mathbb{R}^{N}$ via a mapping $\boldsymbol{\Phi}: S \rightarrow \mathbb{R}^{N}$, with
$N$ relatively small ( $N \approx 200$ has been used for backgammon) and approximate $V_{\pi}(s)$ by a function $f_{\mathbf{w}}(s)$ parameterized by some vector $\mathbf{w}$. For example, $f_{\mathbf{w}}$ could be a linear function defined by $f_{\mathbf{w}}(s)=\mathbf{w} \cdot \boldsymbol{\Phi}(s)$ for all $s \in S$, or some more complex non-linear function of $\mathbf{w}$. The problem then consists of approximating $V_{\pi}$ with $f_{\mathbf{w}}$ and can be formulated as a regression problem. Note, however, that the empirical data available is not i.i.d.

Suppose that at each time step $t$ the agent receives the exact policy value $V_{\pi}\left(s_{t}\right)$. Then, if the family of functions $f_{\mathbf{w}}$ is differentiable, a gradient descent method applied to the empirical squared loss can be used to sequentially update the weight vector w via:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\alpha \nabla_{\mathbf{w}_{t}} \frac{1}{2}\left[V_{\pi}\left(s_{t}\right)-f_{\mathbf{w}_{t}}\left(s_{t}\right)\right]^{2}=\mathbf{w}_{t}+\alpha\left[V_{\pi}\left(s_{t}\right)-f_{\mathbf{w}_{t}}\left(s_{t}\right)\right] \nabla_{\mathbf{w}_{t}} f_{\mathbf{w}_{t}}\left(s_{t}\right)
$$

It is worth mentioning, however, that for large action spaces, there are simple cases where the methods used do not converge and instead cycle.

### 14.6 Chapter notes

Reinforcement learning is an important area of machine learning with a large body of literature. This chapter presents only a brief introduction to this area. For a more detailed study, the reader could consult the book of Sutton and Barto [1998], whose mathematical content is short, or those of Puterman [1994] and Bertsekas [1987], which discuss in more depth several aspects, as well as the more recent book of Szepesvári [2010]. The Ph.D. theses of Singh [1993] and Littman [1996] are also excellent sources.

Some foundational work on MDPs and the introduction of the temporal difference (TD) methods are due to Sutton [1984]. Q-learning was introduced and analyzed by Watkins [1989], though it can be viewed as a special instance of TD methods. The first proof of the convergence of Q-learning was given by Watkins and Dayan [1992].

Many of the techniques used in reinforcement learning are closely related to those of stochastic approximation which originated with the work of Robbins and Monro [1951], followed by a series of results including Dvoretzky [1956], Schmetterer [1960], Kiefer and Wolfowitz [1952], and Kushner and Clark [1978]. For a recent survey of stochastic approximation, including a discussion of powerful proof techniques based on ODE (ordinary differential equations), see Kushner [2010] and the references therein. The connection with stochastic approximation was emphasized by Tsitsiklis [1994] and Jaakkola et al. [1994], who gave a related proof of the convergence of Q-learning. For the convergence rate of Q-learning, consult Even-Dar and Mansour [2003]. For recent results on the convergence of the policy iteration algorithm, see Ye
[2011], which shows that the algorithm is strongly polynomial for a fixed discount factor.

Reinforcement learning has been successfully applied to a variety of problems including robot control, board games such as backgammon in which Tesauro's TDGammon reached the level of a strong master [Tesauro, 1995] (see also chapter 11 of Sutton and Barto [1998]), chess, elevator scheduling problems [Crites and Barto, 1996], telecommunications, inventory management, dynamic radio channel assignment [Singh and Bertsekas, 1997], and a number of other problems (see chapter 1 of Puterman [1994]).


[^0]:    1. A $\beta$-Lipschitz function with $\beta<1$ is also called $\beta$-contracting. In a complete metric space, that is a metric space where any Cauchy sequence converges to a point of that
[^1]:    2. Here, the $O$-notation hides the dependency on the discount factor $\gamma$. As a function of $\gamma$, the running time is not polynomial.
[^2]:    3. Let us emphasize that the LP is only in terms of the variables $V(s)$, as indicated by the subscript of the minimization operator, and not in terms of $V(s)$ and $\alpha(s)$.
