
14 Reinforcement Learning

This chapter presents an introduction to reinforcement learning, a rich area of
machine learning with connections to control theory, optimization, and cognitive
sciences. Reinforcement learning is the study of planing and learning in a scenario
where a learner actively interacts with the environment to achieve a certain goal.
This active interaction justifies the terminology of agent used to refer to the learner.
The achievement of the agent’s goal is typically measured by the reward he receives
from the environment and which he seeks to maximize.

We first introduce the general scenario of reinforcement learning and then intro-
duce the model of Markov decision processes (MDPs), which is widely adopted in
this area, as well as essential concepts such as that of policy or policy value related
to this model. The rest of the chapter presents several algorithms for the planning
problem, which corresponds to the case where the environment model is known to
the agent, and then a series of learning algorithms for the more general case of an
unknown model.

14.1 Learning scenario

The general scenario of reinforcement learning is illustrated by figure 14.1. Unlike
the supervised learning scenario considered in previous chapters, here, the learner
does not passively receive a labeled data set. Instead, he collects information
through a course of actions by interacting with the environment . In response to
an action, the learner or agent, receives two types of information: his current state
in the environment, and a real-valued reward , which is specific to the task and its
corresponding goal.

There are several differences between the learning scenario of reinforcement
learning and that of supervised learning examined in most of the previous chapters.
Unlike the supervised learning scenario, in reinforcement learning there is no fixed
distribution according to which instances are drawn; the choice of a policy defines
the distribution. In fact, slight changes to the policy may have dramatic effects on
the rewards received. Furthermore, in general, the environment may not be fixed

314 Reinforcement Learning

EnvironmentAgent

action

state

reward

Figure 14.1 Representation of the general scenario of reinforcement learning.

and could vary as a result of the actions selected by the agent. This may be a more
realistic model for some learning problems than the standard supervised learning.

The objective of the agent is to maximize his reward and thus to determine
the best course of actions, or policy , to achieve that objective. However, the
information he receives from the environment is only the immediate reward related
to the action just taken. No future or long-term reward feedback is provided by
the environment. An important aspect of reinforcement learning is to take into
consideration delayed rewards or penalties. The agent is faced with the dilemma
between exploring unknown states and actions to gain more information about the
environment and the rewards, and exploiting the information already collected to
optimize his reward. This is known as the exploration versus exploitation trade-
off inherent in reinforcement learning. Note that within this scenario, training and
testing phases are intermixed.

Two main settings can be distinguished here: the case where the environment
model is known to the agent, in which case his objective of maximizing the reward
received is reduced to a planning problem, and the case where the environment
model is unknown, in which case he faces a learning problem. In the latter case,
the agent must learn from the state and reward information gathered to both
gain information about the environment and determine the best action policy. This
chapter presents algorithmic solutions for both of these settings.

14.2 Markov decision process model

We first introduce the model of Markov decision processes (MDPs), a model of the
environment and interactions with the environment widely adopted in reinforcement
learning. An MDP is a Markovian process defined as follows.

Definition 14.1 MDPs
A Markov decision process (MDP) is defined by:

14.3 Policy 315

a set of states S, possibly infinite.

a start state or initial state s0 ∈ S.

a set of actions A, possibly infinite.

a transition probability Pr[s�|s, a]: distribution over destination states s� = δ(s, a).

a reward probability Pr[r�|s, a]: distribution over rewards returned r� = r(s, a).

The model is Markovian because the transition and reward probabilities depend
only on the current state s and not the entire history of states and actions taken.
This definition of MDP can be further generalized to the case of non-discrete state
and action sets.

In a discrete-time model, actions are taken at a set of decision epochs {0, . . . , T},
and this is the model we will adopt in what follows. This model can also be
straightforwardly generalized to a continuous-time one where actions are taken at
arbitrary points in time.

When T is finite, the MDP is said to have a finite horizon. Independently of the
finiteness of the time horizon, an MDP is said to be finite when both S and A are
finite sets. Here, we are considering the general case where the reward r(s, a) at
state s when taking action a is a random variable. However, in many cases, the
reward is assumed to be a deterministic function of the pair of the state and action
pair (s, a).

Figure 14.2 illustrates the model corresponding to an MDP. At time t ∈ [0, T]
the state observed by the agent is st and he takes action at ∈ A. The state reached
is st+1 (with probability Pr[st+1|at, st]) and the reward received rt+1 ∈ R (with
probability Pr[rt+1|at, st]).

Many real-world tasks can be represented by MDPs. Figure 14.3 gives the example
of a simple MDP for a robot picking up balls on a tennis court.

14.3 Policy

The main problem for an agent in an MDP environment is to determine the action
to take at each state, that is, an action policy .

14.3.1 Definition

Definition 14.2 Policy
A policy is a mapping π : S → A.

More precisely, this is the definition of a stationary policy since the choice of the
action does not depend on the time. More generally, we could define a non-stationary

316 Reinforcement Learning

st st+1 st+2

at/rt+1 at+1/rt+2

Figure 14.2 Illustration of the states and transitions of an MDP at different times.

policy as a sequence of mappings πt : S → A indexed by t. In particular, in the finite
horizon case, typically a non-stationary policy is necessary.

The agent’s objective is to find a policy that maximizes his expected (reward)
return. The return he receives following a policy π along a specific sequence of states
st, . . . , sT is defined as follows:

finite horizon (T < ∞):
�T−t

τ=0 r(st+τ , π(st+τ)).

infinite horizon (T = ∞):
�T−t

τ=0 γτr(st+τ , π(st+τ)), where γ ∈ [0, 1) is a constant
factor less than one used to discount future rewards.

Note that the return is a single scalar summarizing a possibly infinite sequence
of immediate rewards. In the discounted case, early rewards are viewed as more
valuable than later ones.

This leads to the following definition of the value of a policy at each state.

14.3.2 Policy value

Definition 14.3 Policy value
The value Vπ(s) of a policy π at state s ∈ S is defined as the expected reward
returned when starting at s and following policy π:

finite horizon: Vπ(s) = E
� �T−t

τ=0 r(st+τ , π(st+τ))|st = s
	
;

infinite discounted horizon: Vπ(s) = E
� �T−t

τ=0 γτr(st+τ , π(st+τ))|st = s
	
;

where the expectations are over the random selection of the states st and the reward
values rt+1. An infinite undiscounted horizon is also often considered based on the
limit of the average reward, when it exists.

As we shall see later, there exists a policy that is optimal for any start state. In view
of the definition of the policy values, seeking the optimal policy can be equivalently
formulated as determining a policy with maximum value at all states.

14.3.3 Policy evaluation

The value of a policy at state s can be expressed in terms of its values at other
states, forming a system of linear equations.

14.3 Policy 317

start search/[.1, R1]

other

search/[.9, R1] carry/[.5, R3]

carry/[.5, -1] pickup/[1, R2]

Figure 14.3 Example of a simple MDP for a robot picking up balls on a tennis
court. The set of actions is A = {search, carry, pickup} and the set of states reduced
to S = {start, other}. Each transition is labeled with the action followed by the
probability of the transition probability and the reward received after taking that
action. R1, R2, and R3 are real numbers indicating the reward associated to each
transition (case of deterministic reward).

Proposition 14.1 Bellman equation

The values Vπ(s) of policy π at states s ∈ S for an infinite horizon MDP obey the
following system of linear equations:

∀s ∈ S, Vπ(s) = E[r(s, π(s)] + γ
�

s�

Pr[s�|s, π(s)]Vπ(s�). (14.1)

Proof We can decompose the expression of the policy value as a sum of the first
term and the rest of the terms:

Vπ(s) = E
� T−t�

τ=0

γτr(st+τ , π(st+τ)) | st = s

�

= E[r(s, π(s)] + γ E
� T−t�

τ=0

γτr(st+1+τ , π(st+1+τ)) | st = s

�

= E[r(s, π(s)] + γ E[Vπ(δ(s, π(s)))],

since we can recognize the expression of Vπ(δ(s, π(s))) in the expectation of the
second line.

The Bellman equations can be rewritten as

V = R + γPV, (14.2)

using the following notation: P denotes the transition probability matrix defined
by Ps,s� = Pr[s�|s, π(s)] for all s, s� ∈ S; V is the value column matrix whose sth
component is Vs = Vπ(s); and R the reward column matrix whose sth component
is Rs = E[r(s, π(s)]. V is typically the unknown variable in the Bellman equations
and is determined by solving for it. The following theorem shows that for a finite

318 Reinforcement Learning

MDP this system of linear equations admits a unique solution.

Theorem 14.1

For a finite MDP, Bellman’s equation admits a unique solution given by

V0 = (I − γP)−1R. (14.3)

Proof The Bellman equation (14.2) can be equivalently written as

(I − γP)V = R.

Thus, to prove the theorem it suffices to show that (I− γP) is invertible. To do so,
note that the norm infinity of P can be computed using its stochasticity properties:

�P�∞ = max
s

�

s�

|Pss� | = max
s

�

s�

Pr[s�|s, π(s)] = 1.

This implies that �γP�∞ = γ < 1. The eigenvalues of P are thus all less than one,
and (I − γP) is invertible.

Thus, for a finite MDP, when the transition probability matrix P and the reward
expectations R are known, the value of policy π at all states can be determined by
inverting a matrix.

14.3.4 Optimal policy

The objective of the agent can be reformulated as that of seeking the optimal policy
defined as follows.

Definition 14.4 Optimal policy
A policy π∗ is optimal if it has maximal value for all states s ∈ S.

Thus, by definition, for any s ∈ S, Vπ∗(s) = maxπ Vπ(s). We will use the shorter
notation V ∗ instead of Vπ∗ . V ∗(s) is the maximal cumulative reward the agent can
expect to receive when starting at state s.

Definition 14.5 State-action value function
The optimal state-action value function Q∗ is defined for all (s, a) ∈ S × A as the
expected return for taking action a ∈ A at state s ∈ S and then following the optimal
policy:

Q∗(s, a) = E[r(s, a)] + γ
�

s�∈S

Pr[s� | s, a]V ∗(s�). (14.4)

14.4 Planning algorithms 319

It is not hard to see then that the optimal policy values are related to Q∗ via

∀s ∈ S, V ∗(s) = max
a∈A

Q∗(s, a). (14.5)

Indeed, by definition, V ∗(s) ≤ maxa∈A Q∗(s, a) for all s ∈ S. If for some s we had
V ∗(s) < maxa∈A Q∗(s, a), then then maximizing action would define a better policy.
Observe also that, by definition of the optimal policy, we have

∀s ∈ S, π∗(s) = argmax
a∈A

Q∗(s, a). (14.6)

Thus, the knowledge of the state-value function Q∗ is sufficient for the agent
to determine the optimal policy, without any direct knowledge of the reward or
transition probabilities. Replacing Q∗ by its definition in (14.5) gives the following
system of equations for the optimal policy values V ∗(s):

V ∗(s) = max
a∈A

F
E[r(s, a)] + γ

�

s�∈S

Pr[s�|s, a]V ∗(s�)
G

, (14.7)

also known as Bellman equations. Note that this new system of equations is not
linear due to the presence of the max operator. It is distinct from the previous linear
system we defined under the same name in (14.1) and (14.2).

14.4 Planning algorithms

In this section, we assume that the environment model is known. That is, the
transition probability Pr[s�|s, a] and the expected reward E[r(s, a)] for all s, s� ∈ S

and a ∈ A are assumed to be given. The problem of finding the optimal policy then
does not require learning the parameters of the environment model or estimating
other quantities helpful in determining the best course of actions, it is purely a
planning problem.

This section discusses three algorithms for this planning problem: the value
iteration algorithm, the policy iteration algorithm, and a linear programming
formulation of the problem.

14.4.1 Value iteration

The value iteration algorithm seeks to determine the optimal policy values V ∗(s)
at each state s ∈ S, and thereby the optimal policy. The algorithm is based on
the Bellman equations (14.7). As already indicated, these equations do not form
a system of linear equations and require a different technique to determine the
solution. The main idea behind the design of the algorithm is to use an iterative

320 Reinforcement Learning

ValueIteration(V0)

1 V ← V0 � V0 arbitrary value

2 while �V − Φ(V)� ≥ (1−γ)�
γ do

3 V ← Φ(V)

4 return Φ(V)

Figure 14.4 Value iteration algorithm.

method to solve them: the new values of V (s) are determined using the Bellman
equations and the current values. This process is repeated until a convergence
condition is met.

For a vector V in R|S|, we denote by V (s) its sth coordinate, for any s ∈ S. Let
Φ : R|S| → R|S| be the mapping defined based on Bellman’s equations (14.7):

∀s ∈ S, [Φ(V)](s) = max
a∈A

F
E[r(s, a)] + γ

�

s�∈S

Pr[s�|s, a]V (s�)
G

. (14.8)

The maximizing actions a ∈ A in these equations define an action to take at each
state s ∈ S, that is a policy π. We can thus rewrite these equations in matrix terms
as follows:

Φ(V) = max
π

{Rπ + γPπV}, (14.9)

where Pπ is the transition probability matrix defined by (Pπ)ss� = Pr[s�|s, π(s)]
for all s, s� ∈ S, and Rπ the reward vector defined by (Rπ)s = E[r(s, π(s)], for all
s ∈ S.

The algorithm is directly based on (14.9). The pseudocode is given above. Starting
from an arbitrary policy value vector V0 ∈ R|S|, the algorithm iteratively applies
Φ to the current V to obtain a new policy value vector until �V − Φ(V)� <
(1−γ)�

γ , where � > 0 is a desired approximation. The following theorem proves the
convergence of the algorithm to the optimal policy values.

Theorem 14.2

For any initial value V0, the sequence defined by Vn+1 = Φ(Vn) converges to V∗.

Proof We first show that Φ is γ-Lipschitz for the � · �∞.1 For any s ∈ S and

1. A β-Lipschitz function with β < 1 is also called β-contracting . In a complete metric
space, that is a metric space where any Cauchy sequence converges to a point of that

14.4 Planning algorithms 321

V ∈ R|S|, let a∗(s) be the maximizing action defining Φ(V)(s) in (14.8). Then, for
any s ∈ S and any U ∈ R|S|,

Φ(V)(s) − Φ(U)(s) ≤ Φ(V)(s) −

E[r(s, a∗(s))] + γ
�

s�∈S

Pr[s� | s, a∗(s)]U(s�)
�

= γ
�

s�∈S

Pr[s�|s, a∗(s)][V(s�) − U(s�)]

≤ γ
�

s�∈S

Pr[s�|s, a∗(s)]�V − U�∞ = γ�V − U�∞.

Proceeding similarly with Φ(U)(s) − Φ(V)(s), we obtain Φ(U)(s) − Φ(V)(s) ≤
γ�V − U�∞. Thus, |Φ(V)(s) − Φ(U)(s)| ≤ γ�V − U�∞ for all s, which implies

�Φ(V) − Φ(U)�∞ ≤ γ�V − U�∞,

that is the γ-Lipschitz property of Φ. Now, by Bellman equations (14.7), V∗ =
Φ(V∗), thus for any n ∈ N,

�V∗ − Vn+1�∞ = �Φ(V∗) − Φ(Vn)�∞ ≤ γ�V∗ − Vn�∞ ≤ γn+1�V∗ − V0�∞,

which proves the convergence of the sequence to V∗ since γ ∈ (0, 1).

The �-optimality of the value returned by the algorithm can be shown as follows.
By the triangle inequality and the γ-Lipschitz property of Φ, for any n ∈ N,

�V∗ − Vn+1�∞ ≤ �V∗ − Φ(Vn+1)�∞ + �Φ(Vn+1) − Vn+1�∞
= �Φ(V∗) − Φ(Vn+1)�∞ + �Φ(Vn+1) − Φ(Vn)�∞
≤ γ�V∗ − Vn+1�∞ + γ�Vn+1 − Vn�∞.

Thus, if Vn+1 is the policy value returned by the algorithm, we have

�V∗ − Vn+1�∞ ≤ γ

1 − γ
�Vn+1 − Vn�∞ ≤ �.

The convergence of the algorithm is in O(log 1
�) number of iterations. Indeed, observe

that

�Vn+1−Vn�∞ = �Φ(Vn)−Φ(Vn−1)�∞ ≤ γ�Vn−Vn−1�∞ ≤ γn�Φ(V0)−V0�∞.

Thus, if n is the largest integer such that (1−γ)�
γ ≤ �Vn+1 − Vn�∞, it must verify

space, a β-contracting function f admits a fixed point : any sequence (f(xn))n∈N converges
to some x with f(x) = x. RN , N ≥ 1, or, more generally, any finite-dimensional vector
space, is a complete metric space.

322 Reinforcement Learning

1

a/[3/4, 2]

2

a/[1/4, 2]

b/[1, 2]
d/[1, 3]

c/[1, 2]

Figure 14.5 Example of MDP with two states. The state set is reduced to
S = {1, 2} and the action set to A = {a, b, c, d}. Only transitions with non-zero
probabilities are represented. Each transition is labeled with the action taken
followed by a pair [p, r] after a slash separator, where p is the probability of the
transition and r the expected reward for taking that transition.

(1−γ)�
γ ≤ γn�Φ(V0) − V0�∞ and therefore n ≤ O

�
log 1

�

�
.2

Figure 14.5 shows a simple example of MDP with two states. The iterated values
of these states calculated by the algorithm for that MDP are given by

Vn+1(1) = max
F

2 + γ

3

4
Vn(1) +

1
4
Vn(2)

�
, 2 + γVn(2)

G

Vn+1(2) = max
F

3 + γVn(1), 2 + γVn(2)
G

.

For V0(1) = −1, V0(2) = 1, and γ = 1/2, we obtain V1(1) = V1(2) = 5/2.
Thus, both states seem to have the same policy value initially. However, by the fifth
iteration, V5(1) = 4.53125, V5(2) = 5.15625 and the algorithm quickly converges
to the optimal values V∗(1) = 14/3 and V∗(2) = 16/3 showing that state 2 has a
higher optimal value.

14.4.2 Policy iteration

An alternative algorithm for determining the best policy consists of using policy
evaluations, which can be achieved via a matrix inversion, as shown by theorem 14.1.
The pseudocode of the algorithm known as policy iteration algorithm is given in
figure 14.6. Starting with an arbitrary action policy π0, the algorithm repeatedly
computes the value of the current policy π via that matrix inversion and greedily
selects the new policy as the one maximizing the right-hand side of the Bellman
equations (14.9).

The following theorem proves the convergence of the policy iteration algorithm.

Theorem 14.3

2. Here, the O-notation hides the dependency on the discount factor γ. As a function of
γ, the running time is not polynomial.

14.4 Planning algorithms 323

PolicyIteration(π0)

1 π ← π0 � π0 arbitrary policy

2 π� ← nil

3 while (π �= π�) do

4 V ← Vπ � policy evaluation: solve (I − γPπ)V = Rπ.

5 π� ← π

6 π ← argmaxπ{Rπ + γPπV} � greedy policy improvement.

7 return π

Figure 14.6 Policy iteration algorithm.

Let (Vn)n∈N be the sequence of policy values computed by the algorithm, then, for
any n ∈ N, the following inequalities hold:

Vn ≤ Vn+1 ≤ V∗. (14.10)

Proof Let πn+1 be the policy improvement at the nth iteration of the algorithm.
We first show that (I − γPπn+1)

−1 preserves ordering, that is, for any column
matrices X and Y in R|S|, if (Y − X) ≥ 0, then (I − γPπn+1)

−1(Y − X) ≥ 0.
As shown in the proof of theorem 14.1, �γP�∞ = γ < 1. Since the radius of
convergence of the power series (1−x)−1 is one, we can use its expansion and write

(I − γPπn+1)
−1 =

∞�

k=0

(γPπn+1)
k.

Thus, if Z = (Y − X) ≥ 0, then (I − γPπn+1)
−1Z =

�∞
k=0(γPπn+1)

kZ ≥ 0, since
the entries of matrix Pπn+1 and its powers are all non-negative as well as those of
Z.

Now, by definition of πn+1, we have

Rπn+1 + γPπn+1Vn ≥ Rπn + γPπnVn = Vn,

which shows that Rπn+1 ≥ (I−γPπn+1)Vn. Since (I−γPπn+1)
−1 preserves ordering,

this implies that Vn+1 = (I − γPπn+1)
−1Rπn+1 ≥ Vn, which concludes the proof

of the theorem.

Note that two consecutive policy values can be equal only at the last iteration of
the algorithm. The total number of possible policies is |A||S|, thus this constitutes
a straightforward upper bound on the maximal number of iterations. Better upper

324 Reinforcement Learning

bounds of the form O
� |A||S|

|S|
�

are known for this algorithm.
For the simple MDP shown by figure 14.5, let the initial policy π0 be defined by

π0(1) = b, π0(2) = c. Then, the system of linear equations for evaluating this policy
is

7
Vπ0(1) = 1 + γVπ0(2)

Vπ0(2) = 2 + γVπ0(2),

which gives Vπ0(1) = 1+γ
1−γ and Vπ0(2) = 2

1−γ .

Theorem 14.4

Let (Un)n∈N be the sequence of policy values generated by the value iteration
algorithm, and (Vn)n∈N the one generated by the policy iteration algorithm. If
U0 = V0, then,

∀n ∈ N, Un ≤ Vn ≤ V∗. (14.11)

Proof We first show that the function Φ previously introduced is monotonic. Let
U and V be such that U ≤ V and let π be the policy such that Φ(U) = Rπ+γPπU.
Then,

Φ(U) ≤ Rπ + γPπV ≤ max
π�

{Rπ� + γPπ�V} = Φ(V).

The proof is by induction on n. Assume that Un ≤ Vn, then by the monotonicity
of Φ, we have

Un+1 = Φ(Un) ≤ Φ(Vn) = max
π

{Rπ + γPπVn}.

Let πn+1 be the maximizing policy, that is, πn+1 = argmaxπ{Rπ +γPπVn}. Then,

Φ(Vn) = Rπn+1 + γPπn+1Vn ≤ Rπn+1 + γPπn+1Vn+1 = Vn+1,

and thus Un+1 ≤ Vn+1.

The theorem shows that the policy iteration algorithm converges in a smaller
number of iterations than the value iteration algorithm due to the optimal policy.
But, each iteration of the policy iteration algorithm requires computing a policy
value, that is, solving a system of linear equations, which is more expensive to
compute that an iteration of the value iteration algorithm.

14.4.3 Linear programming

An alternative formulation of the optimization problem defined by the Bellman
equations (14.7) is via linear programming (LP), that is an optimization prob-

14.5 Learning algorithms 325

lem with a linear objective function and linear constraints. LPs admit (weakly)
polynomial-time algorithmic solutions. There exist a variety of different methods
for solving relative large LPs in practice, using the simplex method, interior-point
methods, or a variety of special-purpose solutions. All of these methods could be
applied in this context.

By definition, the equations (14.7) are each based on a maximization. These
maximizations are equivalent to seeking to minimize all elements of {V (s) : s ∈ S}
under the constraints V (s) ≥ E[r(s, a)] + γ

�
s�∈S Pr[s�|s, a]V (s�), (s ∈ S). Thus,

this can be written as the following LP for any set of fixed positive weights α(s) > 0,
(s ∈ S):

min
V

�

s∈S

α(s)V (s) (14.12)

subject to ∀s ∈ S, ∀a ∈ A, V (s) ≥ E[r(s, a)] + γ
�

s�∈S

Pr[s�|s, a]V (s�),

where α > 0 is the vector with the sth component equal to α(s).3 To make each
coefficient α(s) interpretable as a probability, we can further add the constraints that�

s∈S α(s) = 1. The number of rows of this LP is |S||A| and its number of columns
|S|. The complexity of the solution techniques for LPs is typically more favorable in
terms of the number of rows than the number of columns. This motivates a solution
based on the equivalent dual formulation of this LP which can be written as

max
x

�

s∈S,a∈A

E[r(s, a)] x(s, a) (14.13)

subject to ∀s ∈ S,
�

a∈A

x(s�, a) = α(s�) + γ
�

s∈S,a∈A

Pr[s�|s, a] x(s�, a)

∀s ∈ S, ∀a ∈ A, x(s, a) ≥ 0,

and for which the number of rows is only |S| and the number of columns |S||A|.
Here x(s, a) can be interpreted as the probability of being in state s and taking
action a.

14.5 Learning algorithms

This section considers the more general scenario where the environment model of
an MDP, that is the transition and reward probabilities , is unknown. This matches

3. Let us emphasize that the LP is only in terms of the variables V (s), as indicated by
the subscript of the minimization operator, and not in terms of V (s) and α(s).

326 Reinforcement Learning

many realistic applications of reinforcement learning where, for example, a robot is
placed in an environment that it needs to explore in order to reach a specific goal.

How can an agent determine the best policy in this context? Since the environment
models are not known, he may seek to learn them by estimating transition or reward
probabilities. To do so, as in the standard case of supervised learning, the agent
needs some amount of training information. In the context of reinforcement learning
with MDPs, the training information is the sequence of immediate rewards the agent
receives based on the actions he has taken.

There are two main learning approaches that can be adopted. One known as the
model-free approach consists of learning an action policy directly. Another one, a
model-based approach, consists of first learning the environment model, and then
use that to learn a policy. The Q-learning algorithm we present for this problem is
widely adopted in reinforcement learning and belongs to the family of model-free
approaches.

The estimation and algorithmic methods adopted for learning in reinforcement
learning are closely related to the concepts and techniques in stochastic approxi-
mation. Thus, we start by introducing several useful results of this field that will
be needed for the proofs of convergence of the reinforcement learning algorithms
presented.

14.5.1 Stochastic approximation

Stochastic approximation methods are iterative algorithms for solving optimization
problems whose objective function is defined as the expectation of some random
variable, or to find the fixed point of a function H that is accessible only through
noisy observations. These are precisely the type of optimization problems found in
reinforcement learning. For example, for the Q-learning algorithm we will describe,
the optimal state-action value function Q∗ is the fixed point of some function H

that is defined as an expectation and thus not directly accessible.
We start with a basic result whose proof and related algorithm show the flavor

of more complex ones found in stochastic approximation. The theorem is a gener-
alization of a result known as the strong law of large numbers . It shows that under
some conditions on the coefficients, an iterative sequence of estimates μm converges
almost surely (a.s.) to the mean of a bounded random variable.

Theorem 14.5 Mean estimation
Let X be a random variable taking values in [0, 1] and let x0, . . . , xm be i.i.d. values
of X. Define the sequence (μm)m∈N by

μm+1 = (1 − αm)μm + αmxm, (14.14)

14.5 Learning algorithms 327

with μ0 = x0, αm ∈ [0, 1],
�

m≥0 αm = +∞ and
�

m≥0 α2
m < +∞. Then,

μm
a.s−−→ E[X]. (14.15)

Proof We give the proof of the L2 convergence. The a.s. convergence is shown
later for a more general theorem. By the independence assumption, for m ≥ 0,

Var[μm+1] = (1 − αm)2 Var[μm] + α2
m Var[xm] ≤ (1 − αm) Var[μm] + α2

m. (14.16)

Let � > 0 and suppose that there exists N ∈ N such that for all m ≥ N , Var[μm] ≥ �.
Then, for m ≥ N ,

Var[μm+1] ≤ Var[μm] − αm Var[μm] + α2
m ≤ Var[μm] − αm� + α2

m,

which implies, by reapplying this inequality, that

Var[μm+N] ≤ Var[μN] − �

m+N�

n=N

αn +
m+N�

n=N

α2
n

� �� �
→−∞ when m→∞

,

contradicting Var[μm+N] ≥ 0. Thus, this contradicts the existence of such an integer
N . Therefore, for all N ∈ N, there exists m0 ≥ N such that Var[μm0] ≤ �.

Choose N large enough so that for all m ≥ N , the inequality αm ≤ � holds. This
is possible since the sequence (α2

m)m∈N and thus (αm)m∈N converges to zero in view
of

�
m≥0 α2

m < +∞. We will show by induction that for any m ≥ m0, Var[μm] ≤ �,
which implies the statement of the theorem.

Assume that Var[μm] ≤ � for some m ≥ m0. Then, using this assumption,
inequality 14.16, and the fact that αm ≤ �, the following inequality holds:

Var[μm+1] ≤ (1 − αm)� + �αm = �.

Thus, this proves that limm→+∞ Var[μm] = 0, that is the L2 convergence of μm to
E[X].

Note that the hypotheses of the theorem related to the sequence (αm)m∈N hold in
particular when αm = 1

m . The special case of the theorem with this choice of αm

coincides with the strong law of large numbers. This result has tight connections
with the general problem of stochastic optimization.

Stochastic optimization is the general problem of finding the solution to the
equation

x = H(x),

where x ∈ RN , when

328 Reinforcement Learning

H(x) cannot be computed, for example, because H is not accessible or because
the cost of its computation is prohibitive;

but an i.i.d. sample of m noisy observations H(xi) + wi are available, i ∈ [1, m],
where the noise random variable w has expectation zero: E[w] = 0.

This problem arises in a variety of different contexts and applications. As we shall
see, it is directly related to the learning problem for MDPs.

One general idea for solving this problem is to use an iterative method and define
a sequence (xt)t∈N in a way similar to what is suggested by theorem 14.5:

xt+1 = (1 − αt)xt + αt[H(xt) + wt] (14.17)

= xt + αt[H(xt) + wt − xt], (14.18)

where (αt)t∈N follow conditions similar to those assumed in theorem 14.5. More
generally, we consider sequences defined via

xt+1 = xt + αtD(xt,wt), (14.19)

where D is a function mapping RN ×RN to RN . There are many different theorems
guaranteeing the convergence of this sequence under various assumptions. We will
present one of the most general forms of such theorems, which relies on the following
general result.

Theorem 14.6 Supermartingale convergence
Let (Xt)t∈N, (Yt)t∈N, and (Zt)t∈N be sequences of non-negative random variables
such that

�∞
t=0 Yt < ∞. Let Ft denote all the information for t� ≤ t: Ft =

{(Xt�)t�≤t, (Yt�)t�≤t, (Zt�)t�≤t}. Then, if E
�
Xt+1

��Ft

�
≤ Xt + Yt − Zt, the following

holds:

Xt converges to a limit (with probability one).
�∞

t=0 Zt < ∞.

The following is one of the most general forms of such theorems.

Theorem 14.7

Let D be a function mapping RN × RN to RN , (xt)t∈N and (wt)t∈N two sequences
in RN , and (αt)t∈N a sequence of real numbers with xt+1 = xt + αtD(xt,wt). Let
Ft denote the entire history for t� ≤ t, that is: Ft = {(xt�)t�≤t, (wt�)t�≤t, (αt�)t�≤t}.

Let Ψ denote x → 1
2�x− x∗�2

2 for some x∗ ∈ RN and assume that D and (α)t∈N
verify the following conditions:

∃K1, K2 ∈ R : E
�
�D(xt,wt)�2

2

��Ft

�
≤ K1 + K2 Ψ(xt);

∃c ≥ 0: ∇Ψ(xt)� E
�
D(xt,wt)

��Ft

�
≤ −c Ψ(xt);

14.5 Learning algorithms 329

αt > 0,
�∞

t=0 αt = ∞,
�∞

t=0 α2
t < ∞.

Then, the sequence xt converges almost surely to x∗:

xt
a.s−−→ x∗. (14.20)

Proof Since function Ψ is quadratic, a Taylor expansion gives

Ψ(xt+1) = Ψ(xt) + ∇Ψ(xt)�(xt+1 − xt) +
1
2
(xt+1 − xt)�∇2Ψ(xt)(xt+1 − xt).

Thus,

E
�
Ψ(xt+1)

��Ft

�
= Ψ(xt) + αt∇Ψ(xt)� E

�
D(xt,wt)

��Ft

�
+

α2
t

2
E

�
�D(xt,wt)�2

��Ft

�

≤ Ψ(xt) − αtcΨ(xt) +
α2

t

2
(K1 + K2Ψ(xt))

= Ψ(xt) +
α2

t K1

2
−

αtc −

α2
t K2

2

�
Ψ(xt).

Since by assumption the series
�∞

t=0 α2
t is convergent, (α2

t)t and thus (αt)t converges
to zero. Therefore, for t sufficiently large, the term

�
αtc − α2

t K2
2

�
Ψ(xt) has the

sign of αtcΨ(xt) and is non-negative, since αt > 0, Ψ(xt) ≥ 0, and c > 0.
Thus, by the supermartingale convergence theorem 14.6, Ψ(xt) converges and�∞

t=0

�
αtc − α2

t K2
2

�
Ψ(xt) < ∞. Since Ψ(xt) converges and

�∞
t=0 α2

t < ∞, we have�∞
t=0

α2
t K2
2 Ψ(xt) < ∞. But, since

�∞
t=0 αt = ∞, if the limit of Ψ(xt) were non-zero,

we would have
�∞

t=0 αtcΨ(xt) = ∞. This implies that the limit of Ψ(xt) is zero,
that is limt→∞ �xt − x∗�2 → 0, which implies xt

a.s−−→ x∗.

The following is another related result for which we do not present the full proof.

Theorem 14.8

Let H be a function mapping RN to RN , and (xt)t∈N, (wt)t∈N, and (αt)t∈N be three
sequences in RN with

∀s ∈ [1, N], xt+1(s) = xt(s) + αt(s)
�
H(xt)(s) − xt(s) + wt(s)

	
.

Let Ft denote the entire history for t� ≤ t, that is: Ft = {(xt�)t�≤t, (wt�)t�≤t, (αt�)t�≤t}
and assume that the following conditions are met:

∃K1, K2 ∈ R : E
�
w2

t (s)
��Ft

�
≤ K1 + K2 �xt�2 for some norm � · �;

E
�
wt

��Ft

�
= 0;

∀s ∈ [1, N],
�∞

t=0 αt = ∞,
�∞

t=0 α2
t < ∞; and

H is a � · �∞-contraction with fixed point x∗.

330 Reinforcement Learning

Then, the sequence xt converges almost surely to x∗:

xt
a.s−−→ x∗. (14.21)

The next sections present several learning algorithms for MDPs with an unknown
model.

14.5.2 TD(0) algorithm

This section presents an algorithm, TD(0) algorithm, for evaluating a policy in the
case where the environment model is unknown. The algorithm is based on Bellman’s
linear equations giving the value of a policy π (see proposition 14.1):

Vπ(s) = E[r(s, π(s)] + γ
�

s�

Pr[s�|s, π(s)]Vπ(s�)

= E
s�

�
r(s, π(s)) + γVπ(s�)|s

	
.

However, here the probability distribution according to which this last expectation
is defined is not known. Instead, the TD(0) algorithm consists of

sampling a new state s�; and

updating the policy values according to the following, which justifies the name of
the algorithm:

V (s) ← (1 − α)V (s) + α[r(s, π(s)) + γV (s�)]

= V (s) + α[r(s, π(s)) + γV (s�) − V (s)� �� �
temporal difference of V values

]. (14.22)

Here, the parameter α is a function of the number of visits to the state s.

The pseudocode of the algorithm is given above. The algorithm starts with an
arbitrary policy value vector V0. An initial state is returned by SelectState at
the beginning of each epoch. Within each epoch, the iteration continues until a
final state is found. Within each iteration, action π(s) is taken from the current
state s following policy π. The new state s� reached and the reward r� received are
observed. The policy value of state s is then updated according to the rule (14.22)
and current state set to be s�.

The convergence of the algorithm can be proven using theorem 14.8. We will give
instead the full proof of the convergence of the Q-learning algorithm, for which that
of TD(0) can be viewed as a special case.

14.5 Learning algorithms 331

TD(0)()

1 V ← V0 � initialization.

2 for t ← 0 to T do

3 s ← SelectState()

4 for each step of epoch t do

5 r� ← Reward(s, π(s))

6 s� ← NextState(π, s)

7 V (s) ← (1 − α)V (s) + α[r� + γV (s�)]

8 s ← s�

9 return V

14.5.3 Q-learning algorithm

This section presents an algorithm for estimating the optimal state-action value
function Q∗ in the case of an unknown model. Note that the optimal policy or policy
value can be straightforwardly derived from Q∗ via: π∗(s) = argmaxa∈A Q∗(s, a)
and V ∗(s) = maxa∈A Q∗(s, a). To simplify the presentation, we will assume a
deterministic reward function.

The Q-learning algorithm is based on the equations giving the optimal state-
action value function Q∗ (14.4):

Q∗(s, a) = E[r(s, a)] + γ
�

s�∈S

Pr[s� | s, a]V ∗(s�)

= E
s�

[r(s, a) + γ max
a∈A

Q∗(s, a)].

As for the policy values in the previous section, the distribution model is not known.
Thus, the Q-learning algorithm consists of the following main steps:

sampling a new state s�; and

updating the policy values according to the following:

Q(s, a) ← αQ(s, a) + (1 − α)[r(s, a) + γ max
a�∈A

Q(s�, a�)]. (14.23)

where the parameter α is a function of the number of visits to the state s.

The algorithm can be viewed as a stochastic formulation of the value iteration
algorithm presented in the previous section. The pseudocode is given above. Within

332 Reinforcement Learning

Q-Learning(π)

1 Q ← Q0 � initialization, e.g., Q0 = 0.

2 for t ← 0 to T do

3 s ← SelectState()

4 for each step of epoch t do

5 a ← SelectAction(π, s) � policy π derived from Q, e.g., �-greedy.

6 r� ← Reward(s, a)

7 s� ← NextState(s, a)

8 Q(s, a) ← Q(s, a) + α
�
r� + γ maxa� Q(s�, a�) − Q(s, a)

	

9 s ← s�

10 return Q

each epoch, an action is selected from the current state s using a policy π derived
from Q. The choice of the policy π is arbitrary so long as it guarantees that every
pair (s, a) is visited infinitely many times. The reward received and the state s�

observed are then used to update Q following (14.23).

Theorem 14.9

Consider a finite MDP. Assume that for all s ∈ S and a ∈ A,
�∞

t=0 αt(s, a) = ∞,
and

�∞
t=0 α2

t (s, a) < ∞ with αt(s, a) ∈ [0, 1]. Then, the Q-learning algorithm
converges to the optimal value Q∗ (with probability one).

Note that the conditions on αt(s, a) impose that each state-action pair is visited
infinitely many times.

Proof Let (Qt(s, a))t≥0 denote the sequence of state-action value functions at
(s, a) ∈ S ×A generated by the algorithm. By definition of the Q-learning updates,

Qt+1(st, at) = Qt(st, at) + α
�
r(st, at) + γ max

a�
Qt(st+1, a

�) − Qt(st, at)
	
.

This can be rewritten as the following for all s ∈ S and a ∈ A:

Qt+1(s, a) = Qt(s, a) + αt(s, a)
�
r(s, a) + γ E

s�∼Pr[·|s,a]

�
max

a�
Qt(s�, a�)

�
− Qt(s, a)

�

+ γαt(s, a)
�
max

a�
Qt(s�, a�) − E

s�∼Pr[·|s,a]

�
max

a�
Qt(s�, a�)

��
, (14.24)

if we define αt(s, a) as 0 if (s, a) �= (st, at) and αt(st, at) otherwise. Now, let Qt

14.5 Learning algorithms 333

denote the vector with components Qt(s, a), wt the vector whose s�th is

wt(s�) = max
a�

Qt(s�, a�) − E
s�∼Pr[·|s,a]

�
max

a�
Qt(s�, a�)

�
,

and H(Qt) the vector with components H(Qt)(x, a) defined by

H(Qt)(x, a) = r(s, a) + γ E
s�∼Pr[·|s,a]

�
max

a�
Qt(s�, a�)

�
.

Then, in view of (14.24),

∀(s, a) ∈ S×A, Qt+1(s, a) = Qt(s, a)+αt(s, a)
�
H(Qt)(s, a)−Qt(s, a)+γwt(s)

	
.

We now show that the hypotheses of theorem 14.8 hold for Qt and wt, which will
imply the convergence of Qt to Q∗. The conditions on αt hold by assumption. By
definition of wt, E[wt

��Ft] = 0. Also, for any s� ∈ S,

|wt(s�)| ≤ max
a�

|Qt(s�, a�)| +
���� E
s�∼Pr[·|s,a]

�
max

a�
Qt(s�, a�)

�����
≤ 2 max

s�
|max

a�
Qt(s�, a�)| = 2�Qt�∞.

Thus, E
�
w2

t (s)
��Ft

�
≤ 4�Qt�2

∞. Finally, H is a γ-contraction for � · �∞ since for

any Q�
1,Q

��
2 ∈ R|S|×|A|, and (s, a) ∈ S × A, we can write

|H(Q2)(x, a) − H(Q�
1)(x, a)| =

����γ E
s�∼Pr[·|s,a]

�
max

a�
Q2(s�, a�) − max

a�
Q1(s�, a�)

�����

≤ γ E
s�∼Pr[·|s,a]

����max
a�

Q2(s�, a�) − max
a�

Q1(s�, a�)
���
�

≤ γ E
s�∼Pr[·|s,a]

max
a�

[|Q2(s�, a�) − Q1(s�, a�)|]

≤ γ max
s�

max
a�

[|Q2(s�, a�) − Q1(s�, a�)|]

= γ�Q��
2 − Q�

1�∞.

Since H is a contraction, it admits a fixed point Q∗: H(Q∗) = Q∗.

The choice of the policy π according to which an action a is selected (line 5) is not
specified by the algorithm and, as already indicated, the theorem guarantees the
convergence of the algorithm for an arbitrary policy so long as it ensures that every
pair (s, a) is visited infinitely many times. In practice, several natural choices are
considered for π. One possible choice is the policy determined by the state-action
value at time t, Qt. Thus, the action selected from state s is argmaxa∈A Qt(s, a). But
this choice typically does not guarantee that all actions are taken or that all states
are visited. Instead, a standard choice in reinforcement learning is the so-called �-
greedy policy , which consists of selecting with probability (1 − �) the greedy action

334 Reinforcement Learning

from state s, that is, argmaxa∈A Qt(s, a), and with probability � a random action
from s, for some � ∈ (0, 1). Another possible choice is the so-called Boltzmann
exploration, which, given the current state-action valueQ, epoch t ∈ [0, T], and
current state s, consists of selecting action a with the following probability:

pt(a|s, Q) =
e

Q(s,a)
τt

�
a�∈A e

Q(s,a�)
τt

,

where τt is the temperature. τt must be defined so that τt → 0 as t → ∞, which
ensures that for large values of t, the greedy action based on Q is selected. This is
natural, since as t increases, we can expect Q to be close to the optimal function.
On the other hand, τt must be chosen so that it does not tend to 0 too fast to
ensure that all actions are visited infinitely often. It can be chosen, for instance, as
1/ log(nt(s)), where nt(s) is the number of times s has been visited up to epoch t.

Reinforcement learning algorithms include two components: a learning policy ,
which determines the action to take, and an update rule, which defines the new
estimate of the optimal value function. For an off-policy algorithm, the update
rule does not necessarily depend on the learning policy. Q-learning is an off-policy
algorithm since its update rule (line 8 of the pseudocode) is based on the max
operator and the comparison of all possible actions a�, thus it does not depend on
the policy π. In contrast, the algorithm presented in the next section, SARSA, is
an on-policy algorithm.

14.5.4 SARSA

SARSA is also an algorithm for estimating the optimal state-value function in the
case of an unknown model. The pseudocode is given in figure 14.7. The algorithm
is in fact very similar to Q-learning, except that its update rule (line 9 of the
pseudocode) is based on the action a� selected by the learning policy. Thus, SARSA
is an on-policy algorithm, and its convergence therefore crucially depends on the
learning policy. In particular, the convergence of the algorithm requires, in addition
to all actions being selected infinitely often, that the learning policy becomes greedy
in the limit. The proof of the convergence of the algorithm is nevertheless close to
that of Q-learning.

The name of the algorithm derives from the sequence of instructions defining
successively s, a, r�, s�, and a�, and the fact that the update to the function Q

depends on the quintuple (s, a, r�, s�, a).

14.5 Learning algorithms 335

SARSA(π)

1 Q ← Q0 � initialization, e.g., Q0 = 0.

2 for t ← 0 to T do

3 s ← SelectState()

4 a ← SelectAction(π(Q), s) � policy π derived from Q, e.g., �-greedy.

5 for each step of epoch t do

6 r� ← Reward(s, a)

7 s� ← NextState(s, a)

8 a� ← SelectAction(π(Q), s�) � policy π derived from Q, e.g., �-greedy.

9 Q(s, a) ← Q(s, a) + αt(s, a)
�
r� + γQ(s�, a�) − Q(s, a)

	

10 s ← s�

11 a ← a�

12 return Q

Figure 14.7 The SARSA algorithm.

14.5.5 TD(λ) algorithm

Both TD(0) and Q-learning algorithms are only based on immediate rewards. The
idea of TD(λ) consists instead of using multiple steps ahead. Thus, for n > 1 steps,
we would have the update

V (s) ← V (s) + α (Rn
t − V (s)),

where Rn
t is defined by

Rn
t = rt+1 + γrt+2 + . . . + γn−1rt+n + γnV (st+n).

How should n be chosen? Instead of selecting a specific n, TD(λ) is based on a
geometric distribution over all rewards Rn

t , that is, it uses Rλ
t = (1−λ)

�∞
n=0 λnRn

t

instead of Rn
t where λ ∈ [0, 1]. Thus, the main update becomes

V (s) ← V (s) + α (Rλ
t − V (s)).

The pseudocode of the algorithm is given above. For λ = 0, the algorithm coincides
with TD(0). λ = 1 corresponds to the total future reward.

In the previous sections, we presented learning algorithms for an agent navigating

336 Reinforcement Learning

TD(λ)()

1 V ← V0 � initialization.

2 e ← 0

3 for t ← 0 to T do

4 s ← SelectState()

5 for each step of epoch t do

6 s� ← NextState(π, s)

7 δ ← r(s, π(s)) + λV (s�) − V (s)

8 e(s) ← λe(s) + 1

9 for u ∈ S do

10 if u �= s then

11 e(u) ← γλe(u)

12 V (u) ← V (u) + αδe(u)

13 s ← s�

14 return V

in an unknown environment. The scenario faced in many practical applications is
more challenging; often, the information the agent receives about the environment
is uncertain or unreliable. Such problems can be modeled as partially observable
Markov decision processes (POMDPs). POMDPs are defined by augmenting the
definition of MDPs with an observation probability distribution depending on the
action taken, the state reached, and the observation. The presentation of their model
and solution techniques are beyond the scope of this material.

14.5.6 Large state space

In some cases in practice, the number of states or actions to consider for the
environment may be very large. For example, the number of states in the game
of backgammon is estimated to be over 1020. Thus, the algorithms presented in
the previous section can become computationally impractical for such applications.
More importantly, generalization becomes extremely difficult.

Suppose we wish to estimate the policy value Vπ(s) at each state s using
experience obtained using policy π. To cope with the case of large state spaces,
we can map each state of the environment to RN via a mapping Φ : S → RN , with

14.6 Chapter notes 337

N relatively small (N ≈ 200 has been used for backgammon) and approximate
Vπ(s) by a function fw(s) parameterized by some vector w. For example, fw could
be a linear function defined by fw(s) = w ·Φ(s) for all s ∈ S, or some more complex
non-linear function of w. The problem then consists of approximating Vπ with fw

and can be formulated as a regression problem. Note, however, that the empirical
data available is not i.i.d.

Suppose that at each time step t the agent receives the exact policy value Vπ(st).
Then, if the family of functions fw is differentiable, a gradient descent method
applied to the empirical squared loss can be used to sequentially update the weight
vector w via:

wt+1 = wt − α∇wt

1
2
[Vπ(st) − fwt

(st)]2 = wt + α[Vπ(st) − fwt
(st)]∇wt

fwt
(st).

It is worth mentioning, however, that for large action spaces, there are simple cases
where the methods used do not converge and instead cycle.

14.6 Chapter notes

Reinforcement learning is an important area of machine learning with a large body
of literature. This chapter presents only a brief introduction to this area. For a
more detailed study, the reader could consult the book of Sutton and Barto [1998],
whose mathematical content is short, or those of Puterman [1994] and Bertsekas
[1987], which discuss in more depth several aspects, as well as the more recent book
of Szepesvári [2010]. The Ph.D. theses of Singh [1993] and Littman [1996] are also
excellent sources.

Some foundational work on MDPs and the introduction of the temporal difference
(TD) methods are due to Sutton [1984]. Q-learning was introduced and analyzed
by Watkins [1989], though it can be viewed as a special instance of TD methods.
The first proof of the convergence of Q-learning was given by Watkins and Dayan
[1992].

Many of the techniques used in reinforcement learning are closely related to those
of stochastic approximation which originated with the work of Robbins and Monro
[1951], followed by a series of results including Dvoretzky [1956], Schmetterer [1960],
Kiefer and Wolfowitz [1952], and Kushner and Clark [1978]. For a recent survey of
stochastic approximation, including a discussion of powerful proof techniques based
on ODE (ordinary differential equations), see Kushner [2010] and the references
therein. The connection with stochastic approximation was emphasized by Tsitsiklis
[1994] and Jaakkola et al. [1994], who gave a related proof of the convergence of
Q-learning. For the convergence rate of Q-learning, consult Even-Dar and Mansour
[2003]. For recent results on the convergence of the policy iteration algorithm, see Ye

338 Reinforcement Learning

[2011], which shows that the algorithm is strongly polynomial for a fixed discount
factor.

Reinforcement learning has been successfully applied to a variety of problems
including robot control, board games such as backgammon in which Tesauro’s TD-
Gammon reached the level of a strong master [Tesauro, 1995] (see also chapter
11 of Sutton and Barto [1998]), chess, elevator scheduling problems [Crites and
Barto, 1996], telecommunications, inventory management, dynamic radio channel
assignment [Singh and Bertsekas, 1997], and a number of other problems (see
chapter 1 of Puterman [1994]).

