CS456 Cryptography: Elliptic Curve ElGamal (Solutions)

Bob is using an ELGAMAL probabilistic public-key cryptosystem on an elliptic curve $y^2 = x^3 + 4x + 34$ modulo q = 43. As his "generator", Bob used G = (12, 41) and as the secret multiplier he used N = 4. This determines his public point P = 4 * G = (31, 8). Bob then published his public keys (q, A = 4, B = 34, G, P).

One day, Bob received from Alice the pair of points C = (12, 2) and H = (32, 32), where C is the cipher and H is the half-mask.

- 1. What is the value of the discriminant Δ of the curve?
- 2. Show how Bob recovers the full mask F from the half-mask H. What is the value of F?
- 3. Show how Bob recovers the plaintext M from C and F. What is the value of M?
- 4. What is the value of C + G?
- 5. Is it true that C = 2 * M? If so, where does this place M in the sequence generated by G?

Show all your work including any modular inverse computations (using the Pulverizer table), any point doublings, additions and multiplications on the elliptic curve.

Answer:

- 1. $\Delta = 4 \times A^3 + 27 \times B^2 = 35 \not\equiv 0 \pmod{43}$.
- 2. Bob needs to compute F = 4 * H, since N = 4 is his secret multiplier. Thus, Bob applies point doubling twice to H = (32, 32).
 - Let $H_1 = 2 * H$. Successively computing the slope *m*, the *x*-value and the *y*-value:

$$m = \frac{3x_1^2 + A}{2y_1} = (3 \times 32^2 + 4)(2 \times 32)^{-1} = 23 \times 21^{-1} = 23 \times 41 = 40 \pmod{43}$$

$$x_3 = m^2 - 2x_1 \equiv 40^2 - 2 \times 32 \equiv 31 \pmod{43}$$

$$y_3 = y_1 + m(x_3 - x_1) = 32 + 40(31 - 32) \equiv 35 \pmod{43}.$$

Here is the Pulverizer table for $21^{-1} \equiv 41 \pmod{43}$:

ϕ	e	Q	R	X_1	Y_1	X_2	Y_2
43	21	2	1	1	0	0	1
21	1	21	0	0	1	1	-2

So $H_1 = (31, 8)$ (since we need to reflect the *y*-value).

Let $H_2 = 2 * H_1$. Successively computing the slope *m*, the *x*-value and the *y*-value:

$$m = \frac{3x_1^2 + A}{2y_1} = (3 \times 31^2 + 4)(2 \times 8)^{-1} = 6 \times 16^{-1} = 6 \times 35 = 38 \pmod{43}$$

$$x_3 = m^2 - 2x_1 \equiv 38^2 - 2 \times 31 \equiv 6 \pmod{43}$$

$$y_3 = y_1 + m(x_3 - x_1) = 8 + 38(6 - 31) \equiv 4 \pmod{43}.$$

Here is the Pulverizer table for $16^{-1} \equiv 35 \pmod{43}$:

ϕ	e	Q	R	X_1	Y_1	X_2	Y_2
43	16	2	11	1	0	0	1
16	11	1	5	0	1	1	-2
11	5	2	1	1	-2	-1	3
5	1	5	0	-1	3	3	-8

So $F = H_2 = (6, 39)$ (since we need to reflect the *y*-value).

3. Bob computes M = C + (-F) but -F = (6, 4). Let $C = (x_1, y_1) = (12, 2)$ and $-F = (x_2, y_2) = (6, 4)$. Successively computing the slope m, the x-value and the y-value:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = (4 - 2)(6 - 12)^{-1} = 2 \times 37^{-1} = 2 \times 7 = 14 \pmod{43}$$

$$x_3 = m^2 - (x_1 + x_2) \equiv 14^2 - (12 + 6) \times 6 \pmod{43}$$

$$y_3 = y_1 + m(x_3 - x_1) = 2 + 14(6 - 12) \equiv 4 \pmod{43}.$$

Here is the Pulverizer table for $37^{-1} \equiv 7 \pmod{43}$:

ϕ	e	Q	R	X_1	Y_1	X_2	Y_2
43	37	1	6	1	0	0	1
37	6	6	1	0	1	1	-1
6	1	6	0	1	-1	-6	7

So M = (6, 39) (since we need to reflect the y-value).

4. Since C = (12, 2) and G = (12, 41), we have $C + G = \mathcal{O}$ (Point At Infinity).

5. Yes, C = 2M. Thus, M should be in the middle of the sequence generated by G (since C + G = O).