CS456 Cryptography: Elliptic Curve EIGamal (Solutions)

Bob is using an ELGAMAL probabilistic public-key cryptosystem on an elliptic curve $y^{2}=x^{3}+4 x+34$ modulo $q=43$. As his "generator", Bob used $G=(12,41)$ and as the secret multiplier he used $N=4$. This determines his public point $P=4 * G=(31,8)$. Bob then published his public keys $(q, A=4, B=$ $34, G, P)$.

One day, Bob received from Alice the pair of points $C=(12,2)$ and $H=(32,32)$, where C is the cipher and H is the half-mask.

1 . What is the value of the discriminant Δ of the curve?
2. Show how Bob recovers the full mask F from the half-mask H. What is the value of F ?
3. Show how Bob recovers the plaintext M from C and F. What is the value of M ?
4. What is the value of $C+G$?
5. Is it true that $C=2 * M$? If so, where does this place M in the sequence generated by G ?

Show all your work including any modular inverse computations (using the Pulverizer table), any point doublings, additions and multiplications on the elliptic curve.

Answer:

1. $\Delta=4 \times A^{3}+27 \times B^{2}=35 \not \equiv 0(\bmod 43)$.
2. Bob needs to compute $F=4 * H$, since $N=4$ is his secret multiplier. Thus, Bob applies point doubling twice to $H=(32,32)$.
Let $H_{1}=2 * H$. Successively computing the slope m, the x-value and the y-value:

$$
\begin{aligned}
m & =\frac{3 x_{1}^{2}+A}{2 y_{1}}=\left(3 \times 32^{2}+4\right)(2 \times 32)^{-1}=23 \times 21^{-1}=23 \times 41=40 \quad(\bmod 43) \\
x_{3} & =m^{2}-2 x_{1} \equiv 40^{2}-2 \times 32 \equiv 31 \quad(\bmod 43) \\
y_{3} & =y_{1}+m\left(x_{3}-x_{1}\right)=32+40(31-32) \equiv 35 \quad(\bmod 43)
\end{aligned}
$$

Here is the Pulverizer table for $21^{-1} \equiv 41(\bmod 43)$:

ϕ	e	Q	R	X_{1}	Y_{1}	X_{2}	Y_{2}
43	21	2	1	1	0	0	1
21	1	21	0	0	1	1	-2

So $H_{1}=(31,8)$ (since we need to reflect the y-value).
Let $H_{2}=2 * H_{1}$. Successively computing the slope m, the x-value and the y-value:

$$
\begin{aligned}
m & =\frac{3 x_{1}^{2}+A}{2 y_{1}}=\left(3 \times 31^{2}+4\right)(2 \times 8)^{-1}=6 \times 16^{-1}=6 \times 35=38 \quad(\bmod 43) \\
x_{3} & =m^{2}-2 x_{1} \equiv 38^{2}-2 \times 31 \equiv 6 \quad(\bmod 43) \\
y_{3} & =y_{1}+m\left(x_{3}-x_{1}\right)=8+38(6-31) \equiv 4 \quad(\bmod 43)
\end{aligned}
$$

Here is the Pulverizer table for $16^{-1} \equiv 35(\bmod 43)$:

ϕ	e	Q	R	X_{1}	Y_{1}	X_{2}	Y_{2}
43	16	2	11	1	0	0	1
16	11	1	5	0	1	1	-2
11	5	2	1	1	-2	-1	3
5	1	5	0	-1	3	3	-8

So $F=H_{2}=(6,39)$ (since we need to reflect the y-value).
3. Bob computes $M=C+(-F)$ but $-F=(6,4)$. Let $C=\left(x_{1}, y_{1}\right)=(12,2)$ and $-F=\left(x_{2}, y_{2}\right)=$ $(6,4)$. Successively computing the slope m, the x-value and the y-value:

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=(4-2)(6-12)^{-1}=2 \times 37^{-1}=2 \times 7=14 \quad(\bmod 43) \\
x_{3} & =m^{2}-\left(x_{1}+x_{2}\right) \equiv 14^{2}-(12+6) \times 6 \quad(\bmod 43) \\
y_{3} & =y_{1}+m\left(x_{3}-x_{1}\right)=2+14(6-12) \equiv 4 \quad(\bmod 43) .
\end{aligned}
$$

Here is the Pulverizer table for $37^{-1} \equiv 7(\bmod 43)$:

ϕ	e	Q	R	X_{1}	Y_{1}	X_{2}	Y_{2}
43	37	1	6	1	0	0	1
37	6	6	1	0	1	1	-1
6	1	6	0	1	-1	-6	7

So $M=(6,39)$ (since we need to reflect the y-value).
4. Since $C=(12,2)$ and $G=(12,41)$, we have $C+G=\mathcal{O}$ (Point At Infinity).
5. Yes, $C=2 M$. Thus, M should be in the middle of the sequence generated by G (since $C+G=\mathcal{O}$).

