
CS181A Notes #8 Some Block Ciphers

Encryption modes Let E : {0, 1}n → {0, 1}n be an n-bit encryption mapping
(and in some cases let D : {0, 1}n → {0, 1}n be the corresponding n-bit de-
cryption mapping). If the message is N bits in length, then we need to partition
the message into blocks of size n bits in order to apply the encryption mapping.
Without loss of generality, we assume that N is divisible by n (using padding).
So suppose N = mn and let x1, . . . , xm be the plaintext n-bit blocks.

In what follows, we describe four well-known modes to send a sequence of
n-bit blocks encrypted using E .

1. Electronic Code Book (ECB)
Here, we encrypt each plaintext block independently using E .

yi = E(xi), i = 1, . . . ,m.

Likewise, decryption is performed independently for each ciphertext block.

2. Cipher Block Chaining (CBC)
We mix (using XOR) the ciphertext from the previous block with the current
plaintext block to create the input to E :

y1 = E(x1)
yi+1 = E(xi ⊕ yi), i = 0, . . . ,m− 1.

Decryption proceeds symmetrically using D.

3. Cipher FeedBack (CFB)
Here, we use the encryption map E mainly to form the masking sequence.
Let y0 be a random string shared by Alice (sender) and Bob (receiver).

yi = xi ⊕ E(yi−1), i = 1, . . . ,m.

Decryption only requires E and not D.

4. Output FeedBack (CFB)
Here, we use the encryption map E mainly to form the masking sequence.
Let z0 be a random string shared by Alice (sender) and Bob (receiver).

zi = E(zi−1)
yi = xi ⊕ zi, i = 1, . . . ,m.

Decryption only requires E and not D.

1



DES The Data Encryption Standard (DES) is a pseudo-random 64-bit mapping
that is determined by a 64-bit key. The design is based on repeated application of
a Feistel cipher map on 64-bit string. Suppose the input is given by a 64-bit string
(L,R). Then, the output of the Feistel cipher map is

(L′, R′)
·
= F(L,R) = (R,L⊕ f(R)),

where f : {0, 1}32 → {0, 1}32 is a mapping chosen based on a given secret key.
The permutation π : {0, 1}64 → {0, 1}64 used by DES is built from a composi-
tion of 16 Feistel permutations obtained using 16 different choices of f ’s. More
specifically, if we let Fi(L,R) = (R,L⊕ fi(R)), then

DESK = F1 ◦ . . . ◦ F16,

where f1, . . . , f16 is obtained from the 64-bit keyK according to some scheduling
procedure. For more information on the details of the f -box design, we recom-
mend the article by Coppersmith [1] and by Landau [2]. An interesting work
by Luby and Rackoff [3] showed a construction of a pseudorandom permutation
using 3 rounds of Feistel mapping using different pseudorandom functions.

AES The Advanced Encryption Standard (AES) is a pseudo-random 128-bit
mapping that is determined by a key that is either 128-bit (10-round), 192-bit (12-
round), or 256-bit (14-round). In what follows, we summarize several interesting
features of AES:

• The finite field F256 is ued to represent each ASCII byte (8-bit character).

• The 128-bit (16-byte) input is viewed as a 4× 4 matrix over F256.

• The use of four types of transformations:

1. Byte Substitution (BS):
The input matrix A = [ajk] is mapped to B = MA(−1) + C, where
A(−1) = [a−1jk ].

2. Shift Row (SR):
The i-th row of the input matrix A is circularly rotated i positions, for
i = 0, 1, 2, 3.

3. Mix Column (MC):
The input matrix A is multiplied by a fixed matrix M̃ . The goal is to
achieve a diffusion among bytes (change in one input byte leads to 4
bytes changed in the output).

2



4. Add Round Key (ARK):
The input matrixA is mapped toB = A⊕K, where⊕ is an entry-wise
XOR operation and K is a key matrix.

• The use of a key scheduling algorithm to extract K for each round from the
master 128-bit. We omit details of this algorithm.

References
[1] Don Coppersmith, “The Data Encryption Standard (DES) and its strengths

against attacks,” IBM Journal of Research and Development 38(3):243-250,
1994.

[2] Susan Landau, “Standing the Test of Time: The Data Encryption Standard,”
Notices of the AMS 47(3):341-349, 2000.

[3] M. Luby and C. Rackoff, “How to construct pseudo-random permuta-
tions from pseudo-random functions,” SIAM J. on Computing 17(2):373386,
1988.

3


