
CS181A Notes #4 Basic Details of ElGamal

Here we describe the ElGamal probabilistic public-key cryptosystem. Suppose
the input is a positive integer k (also called the security parameter).

Setup phase Bob prepares his cryptographic keys as follows:

1. Choose a random k-bit prime numbers p.

2. Choose a generator g for the group G = Z?p.
Note: g is a generator iff {gi : i = 1, . . . , p− 1} = G.

3. Choose a random exponent b ∈ Zp−1.

4. Compute a ≡ gb (mod p).

The public keys are (p, g, a) and the secret key is b.

Encryption For Alice to encrypt a message x ∈ G, she performs these steps:

1. Choose a random exponent β ∈ Zp−1.

2. Compute α ≡ gβ (mod p). We call this the half-mask.

3. Compute ω ≡ aβ (mod p). We call this the full-mask.

4. Compute y ≡ xω (mod p).

5. Send the ciphertext pair (y, α).

So, Enc(x) = (xω, α) (where the entities are computed modulo p). Note that the
encryption is probabilistic since β is chosen randomly for each message (which
will mask a repeated message). Also, ω = αb and therefore Bob can recover the
full-mask using his secret key b.

Decryption For Bob to decrypt the ciphertext pair (y, α), he simply computes
Dec(y, α) = y(αb)−1 (mod p).
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Existence of generators Here, we show that for any prime p, the group Z?p
always has a generator. In what follows, we fix a prime p.

Claim 1. Any polynomial f(x) ∈ Zp[x] of degree d ≥ 1 has at most d roots.

Claim 2. xp−1 − 1 ≡
∏p−1

i=1 (x− i) (mod p).

Claim 3. Let d | p− 1. Then, xd ≡ 1 (mod p) has exactly d solutions.

For an element a modulo p, let ordp(a) be the order of a modulo p, which is
the smallest t > 0 so that at ≡ 1 (mod p). We will need the following function
ψ defined as:

ψ(d) = |{x ∈ Z?p : ordp(x) = d}|,

where d divides p − 1. So, ψ(d) counts the number of elements modulo p with
order d.

Möbius Inversion We make a detour to describe the beautiful theory of Möbius
inversion. Let µ(m) be the following function:

µ(m) =


1 if m = 1
0 if m is not square-free
(−1)k if m = p1 . . . pk, for distinct primes pj’s

Fact 1. For m > 1, we have
∑

d|m µ(d) = 0.

Proof. Suppose m =
∏

i p
ei
i . Then,∑

d|m

µ(d) =
∑

εi∈{0,1}

µ(pε11 , . . . , p
εk
k ) = 1− k +

(
k

2

)
− . . .± (−1)k.

The claim follows since the last expression equals (1− 1)k.

Definition 1. For f, g : Z+ → C, we define the convolution of f and g as

(f ? g)(m) =
∑

d1d2=m

f(d1)g(d2).

Let I be a function defined as I(m) = [[m = 1]] and let I be the always-one
function, that is I(m) = 1, for all m. The following properties can be verified
easily:
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1. f ? (g ? h) = (f ? g) ? h.

2. I ? f = f ? I = f .

3. I ? f = f ? I and (I ? f)(n) =
∑

d|n f(d).

4. I ? µ = µ ? I = I.

The next theorem states the the Möbius inversion theorem.

Theorem 1. If g(m) =
∑

d|m f(d), then f(m) =
∑

d|m µ(d)g(m/d).

Proof. Note that g = f ? I . Thus, g ? µ = f ? I ? µ = f ? I = f .

Fact 2.
∑

d|m φ(d) = m.

Proof. Look at the fractions 1/m, 2/m, . . ., andm/m reduced to the lowest terms
a/b where gcd(a, b) = 1. Then, each divisor d of m appears as a denominator
φ(m) times.

Theorem 2. For a prime p, the group Z?p has a generator.

Proof. Let d | p− 1. The size of the subgroup B = {x ∈ Z?p : xd ≡ 1 (mod p)}
is d by Claim 3. Thus,

∑
a|d ψ(a) = d. By Möbius inversion, we get

ψ(d) =
∑
a|d

aµ(d/a) = φ(d).

Thus, ψ(p− 1) = φ(p− 1). For p > 2, we have φ(p− 1) ≥ 1.

Generating random generators To generate random generators for Z?p, we
choose a random element of Z?p and test that it is a generator. To simplify test-
ing, we assume that p is of the form p = 2q + 1 for some other prime q. Primes
of this form are called safe primes (or Sophie Germain primes). It remains open
if there are infinitely many such primes.

Theorem 3. Let p be a prime and suppose g is a generator for Z?p. Then, gt is a
generator iff gcd(t, p− 1) = 1.

3



Proof. Suppose gcd(t, p−1) = 1 and let r be the order of gp. Then, p−1|tr since
g is a generator. Because t and p − 1 are relatively prime, we must have p − 1|r.
We also have r|p − 1 since the order of any element divides p − 1. Therefore,
r = p− 1.

Now, suppose gt is a generator. Assume that d = gcd(t, p − 1) where d > 1.
Then, (gt)(p−1)/d=(gp−1

)t/d ≡ 1 (mod p), which implies that gt is not a generator
since it has order at most (p− 1)/d < p− 1.

Combined, Theorems 2 and 3 imply that there are φ(p− 1) many elements in Z?p
which are generators. If p = 2q+1 is a safe prime, then φ(p− 1) = φ(q) = q− 1
(since φ is multiplicative). So, there is a fraction of (q − 1)/(p − 1) ∼ 1/2 of
elements which are generators.

A Missing proofs
Claim 4. Any polynomial f(x) ∈ Zp[x] of degree d has at most d roots, where
d ≥ 1.

Proof. By induction on d. If d = 1, then f(x) = ax+ b and ax+ b ≡ 0 (mod p)
has exactly one root, namely, x ≡ a−1b (mod p). Assume that the claim holds
for any polynomial of degree at most d. Say, f has degree d+1. If f has no roots,
then we are done. Otherwise, let a be so that f(a) = 0. By the Division Algorithm
for polynomials, we have f(x) = q(x)(x − a) + r(x), where the degree of r is
smaller than 1. Since f(a) = 0, we see that r = 0. Thus, f(x) = q(x)(x − a)
where q is a polynomial of degree d. By inductive assumption, g has at most d
roots. Thus, f has at most d+ 1 roots.

Claim 5. xp−1 − 1 ≡
∏p−1

i=1 (x− i) (mod p).

Proof. Let f(x) = xp−1 − 1 and g(x) =
∏p−1

i=1 (x − i) modulo p. Now, define
h(x) = f(x) − g(x). Note that h(x) is of degree at most p − 2 but it satisfies
h(1) = . . . = h(p − 1) = 0 (mod p). This implies that h is the zero polynomial
since h can have at most p− 2 zeros. Thus, f(x) = g(x) for all x.

Remark: The above claim also follows from Fermat’s Little Theorem.

Claim 6. Let d | p− 1. Then, xd ≡ 1 (mod p) has exactly d solutions.

Proof. Suppose p − 1 = ad. Then, xp−1 − 1 = (xd − 1)g(x), where g(x) =∑a−1
j=0(x

d)j . Since xp−1 − 1 has p− 1 roots, xd − 1 must have d roots.
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Fact 3. If m = pa11 . . . pakk then φ(m) = m
∏k

i=1(1− 1/pi).

Proof. Since m =
∑

d|m φ(d), by Möbius inversion, we have

φ(m) =
∑
d|m

µ(d)(m/d) = m

(
1−

∑
i

1

pi
+
∑
i<j

1

pipj
− . . .

)
= m

∏
i

(
1− 1

pi

)
.

Fact 4. For any integersm,n ≥ 1, φ(mn) = φ(m)φ(n) whenever gcd(m,n) = 1.

Proof. Consider the bijection between Z?mn and Z?m×Z?n provided by the Chinese
Remainder Theorem. Since |Z?N | = φ(N), this proves the claim.
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