CS181A Notes #4 Basic Details of ElGamal

Here we describe the ElGamal *probabilistic* public-key cryptosystem. Suppose the input is a positive integer k (also called the security parameter).

Setup phase Bob prepares his cryptographic keys as follows:

- 1. Choose a random k-bit prime numbers p.
- 2. Choose a generator g for the group $\mathcal{G} = \mathbb{Z}_p^*$. Note: g is a generator iff $\{g^i : i = 1, \dots, p-1\} = \mathcal{G}$.
- 3. Choose a random exponent $b \in \mathbb{Z}_{p-1}$.
- 4. Compute $a \equiv g^b \pmod{p}$.

The *public* keys are (p, q, a) and the *secret* key is b.

Encryption For Alice to encrypt a message $x \in \mathcal{G}$, she performs these steps:

- 1. Choose a random exponent $\beta \in \mathbb{Z}_{p-1}$.
- 2. Compute $\alpha \equiv g^{\beta} \pmod{p}$. We call this the *half-mask*.
- 3. Compute $\omega \equiv a^{\beta} \pmod{p}$. We call this the *full-mask*.
- 4. Compute $y \equiv x\omega \pmod{p}$.
- 5. Send the ciphertext pair (y, α) .

So, $\text{Enc}(x) = (x\omega, \alpha)$ (where the entities are computed modulo p). Note that the encryption is probabilistic since β is chosen randomly for each message (which will mask a repeated message). Also, $\omega = \alpha^b$ and therefore Bob can recover the full-mask using his secret key b.

Decryption For Bob to decrypt the ciphertext pair (y, α) , he simply computes $Dec(y, \alpha) = y(\alpha^b)^{-1} \pmod{p}$.

Existence of generators Here, we show that for any prime p, the group \mathbb{Z}_p^* always has a generator. In what follows, we fix a prime p.

Claim 1. Any polynomial $f(x) \in \mathbb{Z}_p[x]$ of degree $d \ge 1$ has at most d roots.

Claim 2. $x^{p-1} - 1 \equiv \prod_{i=1}^{p-1} (x-i) \pmod{p}$.

Claim 3. Let $d \mid p - 1$. Then, $x^d \equiv 1 \pmod{p}$ has exactly d solutions.

For an element a modulo p, let $\operatorname{ord}_p(a)$ be the **order** of a modulo p, which is the smallest t > 0 so that $a^t \equiv 1 \pmod{p}$. We will need the following function ψ defined as:

$$\psi(d) = |\{x \in \mathbb{Z}_p^\star : \operatorname{ord}_p(x) = d\}|,$$

where d divides p - 1. So, $\psi(d)$ counts the number of elements modulo p with order d.

Möbius Inversion We make a detour to describe the beautiful theory of Möbius inversion. Let $\mu(m)$ be the following function:

$$\mu(m) = \begin{cases} 1 & \text{if } m = 1 \\ 0 & \text{if } m \text{ is not square-free} \\ (-1)^k & \text{if } m = p_1 \dots p_k, \text{ for distinct primes } p_j\text{'s} \end{cases}$$

Fact 1. For m > 1, we have $\sum_{d|m} \mu(d) = 0$.

Proof. Suppose $m = \prod_i p_i^{e_i}$. Then,

$$\sum_{d|m} \mu(d) = \sum_{\varepsilon_i \in \{0,1\}} \mu(p_1^{\varepsilon_1}, \dots, p_k^{\varepsilon_k}) = 1 - k + \binom{k}{2} - \dots \pm (-1)^k.$$

The claim follows since the last expression equals $(1-1)^k$.

Definition 1. For $f, g : \mathbb{Z}^+ \to \mathbb{C}$, we define the convolution of f and g as

$$(f \star g)(m) = \sum_{d_1d_2=m} f(d_1)g(d_2).$$

Let \mathbb{I} be a function defined as $\mathbb{I}(m) = \llbracket m = 1 \rrbracket$ and let I be the always-one function, that is I(m) = 1, for all m. The following properties can be verified easily:

- 1. $f \star (g \star h) = (f \star g) \star h$. 2. $\mathbb{I} \star f = f \star \mathbb{I} = f$.
- 3. $I \star f = f \star I$ and $(I \star f)(n) = \sum_{d|n} f(d)$.
- 4. $I \star \mu = \mu \star I = \mathbb{I}$.

The next theorem states the the Möbius inversion theorem.

Theorem 1. If
$$g(m) = \sum_{d|m} f(d)$$
, then $f(m) = \sum_{d|m} \mu(d)g(m/d)$.
Proof. Note that $g = f \star I$. Thus, $g \star \mu = f \star I \star \mu = f \star \mathbb{I} = f$.

Fact 2. $\sum_{d|m} \phi(d) = m$.

Proof. Look at the fractions $1/m, 2/m, \ldots$, and m/m reduced to the lowest terms a/b where gcd(a, b) = 1. Then, each divisor d of m appears as a denominator $\phi(m)$ times.

Theorem 2. For a prime p, the group \mathbb{Z}_p^{\star} has a generator.

Proof. Let $d \mid p - 1$. The size of the subgroup $B = \{x \in \mathbb{Z}_p^{\star} : x^d \equiv 1 \pmod{p}\}$ is d by Claim 3. Thus, $\sum_{a \mid d} \psi(a) = d$. By Möbius inversion, we get

$$\psi(d) = \sum_{a|d} a\mu(d/a) = \phi(d).$$

Thus, $\psi(p-1) = \phi(p-1)$. For p > 2, we have $\phi(p-1) \ge 1$.

Generating random generators To generate random generators for \mathbb{Z}_p^* , we choose a random element of \mathbb{Z}_p^* and test that it is a generator. To simplify testing, we assume that p is of the form p = 2q + 1 for some other prime q. Primes of this form are called *safe* primes (or Sophie Germain primes). It remains open if there are infinitely many such primes.

Theorem 3. Let p be a prime and suppose g is a generator for \mathbb{Z}_p^* . Then, g^t is a generator iff gcd(t, p - 1) = 1.

Proof. Suppose gcd(t, p-1) = 1 and let r be the order of g^p . Then, p-1|tr since g is a generator. Because t and p-1 are relatively prime, we must have p-1|r. We also have r|p-1 since the order of any element divides p-1. Therefore, r = p-1.

Now, suppose g^t is a generator. Assume that $d = \gcd(t, p-1)$ where d > 1. Then, $(g^t)^{(p-1)/d=(g^{p-1})t/d} \equiv 1 \pmod{p}$, which implies that g^t is not a generator since it has order at most (p-1)/d < p-1.

Combined, Theorems 2 and 3 imply that there are $\phi(p-1)$ many elements in \mathbb{Z}_p^{\star} which are generators. If p = 2q + 1 is a safe prime, then $\phi(p-1) = \phi(q) = q - 1$ (since ϕ is multiplicative). So, there is a fraction of $(q-1)/(p-1) \sim 1/2$ of elements which are generators.

A Missing proofs

Claim 4. Any polynomial $f(x) \in \mathbb{Z}_p[x]$ of degree d has at most d roots, where $d \ge 1$.

Proof. By induction on d. If d = 1, then f(x) = ax + b and $ax + b \equiv 0 \pmod{p}$ has exactly one root, namely, $x \equiv a^{-1}b \pmod{p}$. Assume that the claim holds for any polynomial of degree at most d. Say, f has degree d + 1. If f has no roots, then we are done. Otherwise, let a be so that f(a) = 0. By the Division Algorithm for polynomials, we have f(x) = q(x)(x - a) + r(x), where the degree of r is smaller than 1. Since f(a) = 0, we see that r = 0. Thus, f(x) = q(x)(x - a) where q is a polynomial of degree d. By inductive assumption, g has at most d roots. Thus, f has at most d + 1 roots.

Claim 5. $x^{p-1} - 1 \equiv \prod_{i=1}^{p-1} (x-i) \pmod{p}$.

Proof. Let $f(x) = x^{p-1} - 1$ and $g(x) = \prod_{i=1}^{p-1} (x - i)$ modulo p. Now, define h(x) = f(x) - g(x). Note that h(x) is of degree at most p - 2 but it satisfies $h(1) = \ldots = h(p-1) = 0 \pmod{p}$. This implies that h is the zero polynomial since h can have at most p - 2 zeros. Thus, f(x) = g(x) for all x.

Remark: The above claim also follows from Fermat's Little Theorem.

Claim 6. Let $d \mid p - 1$. Then, $x^d \equiv 1 \pmod{p}$ has exactly d solutions.

Proof. Suppose p - 1 = ad. Then, $x^{p-1} - 1 = (x^d - 1)g(x)$, where $g(x) = \sum_{i=0}^{a-1} (x^d)^i$. Since $x^{p-1} - 1$ has p - 1 roots, $x^d - 1$ must have d roots. \Box

Fact 3. If $m = p_1^{a_1} \dots p_k^{a_k}$ then $\phi(m) = m \prod_{i=1}^k (1 - 1/p_i)$.

Proof. Since $m = \sum_{d|m} \phi(d)$, by Möbius inversion, we have

$$\phi(m) = \sum_{d|m} \mu(d)(m/d) = m \left(1 - \sum_{i} \frac{1}{p_i} + \sum_{i < j} \frac{1}{p_i p_j} - \dots \right) = m \prod_{i} \left(1 - \frac{1}{p_i} \right)$$

Fact 4. For any integers $m, n \ge 1$, $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1. *Proof.* Consider the bijection between \mathbb{Z}_{mn}^{\star} and $\mathbb{Z}_{m}^{\star} \times \mathbb{Z}_{n}^{\star}$ provided by the Chinese Remainder Theorem. Since $|\mathbb{Z}_{N}^{\star}| = \phi(N)$, this proves the claim.