CS181A Notes \#4 Basic Details of ElGamal

Here we describe the ElGamal probabilistic public-key cryptosystem. Suppose the input is a positive integer k (also called the security parameter).

Setup phase Bob prepares his cryptographic keys as follows:

1. Choose a random k-bit prime numbers p.
2. Choose a generator g for the group $\mathcal{G}=\mathbb{Z}_{p}^{\star}$.

Note: g is a generator iff $\left\{g^{i}: i=1, \ldots, p-1\right\}=\mathcal{G}$.
3. Choose a random exponent $b \in \mathbb{Z}_{p-1}$.
4. Compute $a \equiv g^{b}(\bmod p)$.

The public keys are (p, g, a) and the secret key is b.

Encryption For Alice to encrypt a message $x \in \mathcal{G}$, she performs these steps:

1. Choose a random exponent $\beta \in \mathbb{Z}_{p-1}$.
2. Compute $\alpha \equiv g^{\beta}(\bmod p)$. We call this the half-mask.
3. Compute $\omega \equiv a^{\beta}(\bmod p)$. We call this the full-mask.
4. Compute $y \equiv x \omega(\bmod p)$.
5. Send the ciphertext pair (y, α).

So, $\operatorname{Enc}(x)=(x \omega, \alpha)$ (where the entities are computed modulo p). Note that the encryption is probabilistic since β is chosen randomly for each message (which will mask a repeated message). Also, $\omega=\alpha^{b}$ and therefore Bob can recover the full-mask using his secret key b.

Decryption For Bob to decrypt the ciphertext pair (y, α), he simply computes $\operatorname{Dec}(y, \alpha)=y\left(\alpha^{b}\right)^{-1}(\bmod p)$.

Existence of generators Here, we show that for any prime p, the group \mathbb{Z}_{p}^{\star} always has a generator. In what follows, we fix a prime p.

Claim 1. Any polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree $d \geq 1$ has at most d roots.
Claim 2. $x^{p-1}-1 \equiv \prod_{i=1}^{p-1}(x-i)(\bmod p)$.
Claim 3. Let $d \mid p-1$. Then, $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
For an element a modulo p, let $\operatorname{ord}_{p}(a)$ be the order of a modulo p, which is the smallest $t>0$ so that $a^{t} \equiv 1(\bmod p)$. We will need the following function ψ defined as:

$$
\psi(d)=\left|\left\{x \in \mathbb{Z}_{p}^{\star}: \operatorname{ord}_{p}(x)=d\right\}\right|,
$$

where d divides $p-1$. So, $\psi(d)$ counts the number of elements modulo p with order d.

Möbius Inversion We make a detour to describe the beautiful theory of Möbius inversion. Let $\mu(m)$ be the following function:

$$
\mu(m)= \begin{cases}1 & \text { if } m=1 \\ 0 & \text { if } m \text { is not square-free } \\ (-1)^{k} & \text { if } m=p_{1} \ldots p_{k}, \text { for distinct primes } p_{j} \text { 's }\end{cases}
$$

Fact 1. For $m>1$, we have $\sum_{d \mid m} \mu(d)=0$.
Proof. Suppose $m=\prod_{i} p_{i}^{e_{i}}$. Then,

$$
\sum_{d \mid m} \mu(d)=\sum_{\varepsilon_{i} \in\{0,1\}} \mu\left(p_{1}^{\varepsilon_{1}}, \ldots, p_{k}^{\varepsilon_{k}}\right)=1-k+\binom{k}{2}-\ldots \pm(-1)^{k}
$$

The claim follows since the last expression equals $(1-1)^{k}$.
Definition 1. For $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{C}$, we define the convolution of f and g as

$$
(f \star g)(m)=\sum_{d_{1} d_{2}=m} f\left(d_{1}\right) g\left(d_{2}\right) .
$$

Let \mathbb{I} be a function defined as $\mathbb{I}(m)=\llbracket m=1 \rrbracket$ and let I be the always-one function, that is $I(m)=1$, for all m. The following properties can be verified easily:

1. $f \star(g \star h)=(f \star g) \star h$.
2. $\mathbb{I} \star f=f \star \mathbb{I}=f$.
3. $I \star f=f \star I$ and $(I \star f)(n)=\sum_{d \mid n} f(d)$.
4. $I \star \mu=\mu \star I=\mathbb{I}$.

The next theorem states the the Möbius inversion theorem.
Theorem 1. If $g(m)=\sum_{d \mid m} f(d)$, then $f(m)=\sum_{d \mid m} \mu(d) g(m / d)$.
Proof. Note that $g=f \star I$. Thus, $g \star \mu=f \star I \star \mu=f \star \mathbb{I}=f$.
Fact 2. $\sum_{d \mid m} \phi(d)=m$.
Proof. Look at the fractions $1 / m, 2 / m, \ldots$, and m / m reduced to the lowest terms a / b where $\operatorname{gcd}(a, b)=1$. Then, each divisor d of m appears as a denominator $\phi(m)$ times.

Theorem 2. For a prime p, the group \mathbb{Z}_{p}^{\star} has a generator.
Proof. Let $d \mid p-1$. The size of the subgroup $B=\left\{x \in \mathbb{Z}_{p}^{\star}: x^{d} \equiv 1(\bmod p)\right\}$ is d by Claim 3. Thus, $\sum_{a \mid d} \psi(a)=d$. By Möbius inversion, we get

$$
\psi(d)=\sum_{a \mid d} a \mu(d / a)=\phi(d) .
$$

Thus, $\psi(p-1)=\phi(p-1)$. For $p>2$, we have $\phi(p-1) \geq 1$.

Generating random generators To generate random generators for \mathbb{Z}_{p}^{\star}, we choose a random element of \mathbb{Z}_{p}^{\star} and test that it is a generator. To simplify testing, we assume that p is of the form $p=2 q+1$ for some other prime q. Primes of this form are called safe primes (or Sophie Germain primes). It remains open if there are infinitely many such primes.

Theorem 3. Let p be a prime and suppose g is a generator for \mathbb{Z}_{p}^{\star}. Then, g^{t} is a generator iff $\operatorname{gcd}(t, p-1)=1$.

Proof. Suppose $\operatorname{gcd}(t, p-1)=1$ and let r be the order of g^{p}. Then, $p-1 \mid t r$ since g is a generator. Because t and $p-1$ are relatively prime, we must have $p-1 \mid r$. We also have $r \mid p-1$ since the order of any element divides $p-1$. Therefore, $r=p-1$.

Now, suppose g^{t} is a generator. Assume that $d=\operatorname{gcd}(t, p-1)$ where $d>1$. Then, $\left.\left(g^{t}\right)^{(p-1) / d=\left(g^{p-1}\right.}\right)^{t / d} \equiv 1(\bmod p)$, which implies that g^{t} is not a generator since it has order at most $(p-1) / d<p-1$.

Combined, Theorems 2 and 3 imply that there are $\phi(p-1)$ many elements in \mathbb{Z}_{p}^{\star} which are generators. If $p=2 q+1$ is a safe prime, then $\phi(p-1)=\phi(q)=q-1$ (since ϕ is multiplicative). So, there is a fraction of $(q-1) /(p-1) \sim 1 / 2$ of elements which are generators.

A Missing proofs

Claim 4. Any polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree d has at most d roots, where $d \geq 1$.

Proof. By induction on d. If $d=1$, then $f(x)=a x+b$ and $a x+b \equiv 0(\bmod p)$ has exactly one root, namely, $x \equiv a^{-1} b(\bmod p)$. Assume that the claim holds for any polynomial of degree at most d. Say, f has degree $d+1$. If f has no roots, then we are done. Otherwise, let a be so that $f(a)=0$. By the Division Algorithm for polynomials, we have $f(x)=q(x)(x-a)+r(x)$, where the degree of r is smaller than 1 . Since $f(a)=0$, we see that $r=0$. Thus, $f(x)=q(x)(x-a)$ where q is a polynomial of degree d. By inductive assumption, g has at most d roots. Thus, f has at most $d+1$ roots.

Claim 5. $x^{p-1}-1 \equiv \prod_{i=1}^{p-1}(x-i)(\bmod p)$.
Proof. Let $f(x)=x^{p-1}-1$ and $g(x)=\prod_{i=1}^{p-1}(x-i)$ modulo p. Now, define $h(x)=f(x)-g(x)$. Note that $h(x)$ is of degree at most $p-2$ but it satisfies $h(1)=\ldots=h(p-1)=0(\bmod p)$. This implies that h is the zero polynomial since h can have at most $p-2$ zeros. Thus, $f(x)=g(x)$ for all x.

Remark: The above claim also follows from Fermat's Little Theorem.
Claim 6. Let $d \mid p-1$. Then, $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
Proof. Suppose $p-1=a d$. Then, $x^{p-1}-1=\left(x^{d}-1\right) g(x)$, where $g(x)=$ $\sum_{j=0}^{a-1}\left(x^{d}\right)^{j}$. Since $x^{p-1}-1$ has $p-1$ roots, $x^{d}-1$ must have d roots.

Fact 3. If $m=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ then $\phi(m)=m \prod_{i=1}^{k}\left(1-1 / p_{i}\right)$.
Proof. Since $m=\sum_{d \mid m} \phi(d)$, by Möbius inversion, we have
$\phi(m)=\sum_{d \mid m} \mu(d)(m / d)=m\left(1-\sum_{i} \frac{1}{p_{i}}+\sum_{i<j} \frac{1}{p_{i} p_{j}}-\ldots\right)=m \prod_{i}\left(1-\frac{1}{p_{i}}\right)$.

Fact 4. For any integers $m, n \geq 1, \phi(m n)=\phi(m) \phi(n)$ whenever $\operatorname{gcd}(m, n)=1$.
Proof. Consider the bijection between $\mathbb{Z}_{m n}^{\star}$ and $\mathbb{Z}_{m}^{\star} \times \mathbb{Z}_{n}^{\star}$ provided by the Chinese Remainder Theorem. Since $\left|\mathbb{Z}_{N}^{\star}\right|=\phi(N)$, this proves the claim.

