CS181A Notes \#2 Basic Number Theory

Theorem 1. (Euclid) There are infinitely many prime numbers.
Proof. Suppose there are only finitely many primes, say $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$. Since any number is divisible by some prime, $q=p_{1} p_{2} \ldots p_{m}+1$ must be divisible by some prime, say p_{j}, from the list. But this implies p_{j} divides 1 , which is a contradiction.

Exercise 1. Extend the proof to primes of the form $4 k+3$, for a positive integer k. What about primes of the form $4 k+1$?

Theorem 2. (Euclid's GCD algorithm)
For any integers a and b, where $a \geq b \geq 0$, we have

$$
\operatorname{gcd}(a, b)= \begin{cases}a & \text { if } b=0 \tag{1}\\ \operatorname{gcd}(b, a \bmod b) & \text { if } b>0\end{cases}
$$

Proof. The base case is clear. We need to show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ for $a \geq b>0$. Let $r=a \bmod b$. Then, $r=a-q b$, for some quotient q with $0<r<b$. Suppose $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{gcd}(b, r)$. It is clear that $d \mid b$ (by definition) and that $d \mid r$ (since r is a linear combination of a and b). Thus, $d \mid e$ since $e=\operatorname{gcd}(b, r)$. Similarly, $e \mid d$ given that it divides both b and r and that $a=q b+r$. Therefore, $d=e$.

Corollary 1. (Pulverizer of Aryabhata)
For any integers $a \geq b \geq 0$, where $d=\operatorname{gcd}(a, b)$, there are integers $x, y \in \mathbb{Z}$ so that

$$
d=x a+y b .
$$

Moreover, d is the smallest positive member of the set $\{x a+y b: x, y \in \mathbb{Z}\}$.
Finding Aryabhata: There is a natural way of adapting Euclid's algorithm to recursively compute the extended constants x and y so that $d=x a+y b$. But a simpler algorithm is the following iterative version. Given the numbers a and b, allocate two pairs of coefficients, say $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$, so that these invariants hold:

$$
\begin{equation*}
a^{(k)}=x_{1}^{(k)} a+y_{1}^{(k)} b, \quad b^{(k)}=x_{2}^{(k)} a+y_{2}^{(k)} b, \tag{2}
\end{equation*}
$$

where the superscript k keeps track of the k-iteration in the algorithm. The algorithm begins by setting: $x_{1}^{(0)}=1, y_{1}^{(0)}=0$ and $x_{2}^{(0)}=0, y_{2}^{(0)}=1$. The
invariant is clearly satisfied. At the end, when $b^{(K)}=0$, note that we have $\operatorname{gcd}(a, b)=a^{(K)}=x_{1}^{(K)} a+y_{1}^{(K)} b$ which yields the solution. What remains is to show that we can compute the pair of coefficients moving forward. So, having (2) in hand, since $a^{(k+1)}=b^{(k)}$ we immediately have

$$
x_{1}^{(k+1)}=x_{2}^{(k)}, y_{1}^{(k+1)}=y_{2}^{(k)}
$$

Furthermore, $b^{(k+1)}=a^{(k)} \bmod b^{(k)}$ (by definition of Euclid's algorithm). Moreover, the remainder is a linear combination of $a^{(k)}$ and $b^{(k)}$:

$$
\begin{align*}
b^{(k+1)} & =a^{(k)}-q b^{(k)} \tag{3}\\
& =\left[x_{1}^{(k)} a+y_{1}^{(k)} b\right]-q\left[x_{2}^{(k)} a+y_{2}^{(k)} b\right] \tag{4}\\
& =\left[x_{1}^{(k)}-q x_{2}^{(k)}\right] a+\left[y_{1}^{(k)}-q y_{2}^{(k)}\right] b \tag{5}\\
& =x_{2}^{(k+1)} a+y_{2}^{(k+1)} b \tag{6}
\end{align*}
$$

Theorem 3. (Fermat's Little Theorem)
Let p be a prime number. Then, for any $a \not \equiv 0(\bmod p)$, we have

$$
\begin{equation*}
a^{p-1} \equiv 1 \quad(\bmod p) . \tag{7}
\end{equation*}
$$

Proof. First, note that the map $f_{a}(x) \equiv a x(\bmod p)$ is a bijection, for any $a \not \equiv 0$ $(\bmod p)$. The claim follows by observing the following equivalent products:

$$
\begin{equation*}
\prod_{x \neq 0} x \equiv \prod_{x \neq 0} f_{a}(x) \equiv a^{p-1} \prod_{x \neq 0} x \tag{8}
\end{equation*}
$$

The first equivalence follows since f_{a} is bijective whereas the second is from commutativity. Since each x has an inverse modulo p, we have proved our claim.

Exercise 2. Prove Euler-Fermat's Little Theorem. Let n be any integer. Then, for any $a \not \equiv 0(\bmod n)$, we have $a^{\phi(n)} \equiv 1(\bmod n)$.

Theorem 4. (Chinese Remainder Theorem)
Let $n=p q$ where p and q are two distinct primes. Suppose that $z \equiv a(\bmod p)$ and $z \equiv b(\bmod q)$ hold simultaneously. Then, there is a unique $z \bmod n$ which satisfies the above two congruences.

Proof. Suppose we have two numbers α_{p} and α_{q} with the properties:

$$
\alpha_{p} \equiv\left\{\begin{array} { l l }
{ 1 } & { (\operatorname { m o d } p) } \tag{9}\\
{ 0 } & { (\operatorname { m o d } q) }
\end{array} \quad \alpha _ { q } \equiv \left\{\begin{array}{lr}
0 & (\bmod p) \\
1 & (\bmod q)
\end{array}\right.\right.
$$

Then, $z=\left(a \alpha_{p}+b \alpha_{q}\right) \bmod n$ is our solution. Since $\operatorname{gcd}(p, q)=1$, there are integers x and y so that $1=x p+y q$. The proof is done by observing that $\alpha_{p}=y q$ and $\alpha_{q}=x p$ satisfy (9).

Exercise 3. Extend the Chinese Remainder Theorem to allow pairwise relatively prime moduli and also to the case for more than two simultaneous congruences.

Lemma 1. Let p be a prime and suppose $p \mid a b$ for two integers a and b. Then, $p \mid a$ or $p \mid$.

Proof. If $p \mid a$, then we are done. Suppose p does not divide a, and thus $\operatorname{gcd}(p, a)=$ 1. By the extended Euclidean algorithm, there are integers x and y so that $1=$ $x p+y a$. This shows $b=x p b+y(a b)$, whereby $p \mid b$ follows.

Lemma 2. If p is prime, then the quadratic equation $x^{2} \equiv 1(\bmod p)$ has exactly two solutions, namely $x \equiv \pm 1(\bmod p)$.

Proof. First, we rewrite the quadratic equivalently as $x^{2}-1 \equiv 0(\bmod p)$ which implies $p \mid(x-1)(x+1)$. Thus, either $p \mid(x-1)($ from which $x \equiv+1(\bmod p)$ follows) or $p \mid(x+1)$ (from which $x \equiv-1(\bmod p)$ follows). There are no other possibilities.

