
CS181A Notes #2 Basic Number Theory

Theorem 1. (Euclid) There are infinitely many prime numbers.

Proof. Suppose there are only finitely many primes, say {p1, p2, . . . , pm}. Since
any number is divisible by some prime, q = p1p2 . . . pm + 1 must be divisible
by some prime, say pj , from the list. But this implies pj divides 1, which is a
contradiction.

Exercise 1. Extend the proof to primes of the form 4k + 3, for a positive integer
k. What about primes of the form 4k + 1?

Theorem 2. (Euclid’s GCD algorithm)
For any integers a and b, where a ≥ b ≥ 0, we have

gcd(a, b) =

{
a if b = 0
gcd(b, a mod b) if b > 0

(1)

Proof. The base case is clear. We need to show that gcd(a, b) = gcd(b, a mod b)
for a ≥ b > 0. Let r = a mod b. Then, r = a − qb, for some quotient q with
0 < r < b. Suppose d = gcd(a, b) and e = gcd(b, r). It is clear that d|b (by
definition) and that d|r (since r is a linear combination of a and b). Thus, d|e
since e = gcd(b, r). Similarly, e|d given that it divides both b and r and that
a = qb+ r. Therefore, d = e.

Corollary 1. (Pulverizer of Aryabhata)
For any integers a ≥ b ≥ 0, where d = gcd(a, b), there are integers x, y ∈ Z so
that

d = xa+ yb.

Moreover, d is the smallest positive member of the set {xa+ yb : x, y ∈ Z}.

Finding Aryabhata: There is a natural way of adapting Euclid’s algorithm to re-
cursively compute the extended constants x and y so that d = xa + yb. But a
simpler algorithm is the following iterative version. Given the numbers a and b,
allocate two pairs of coefficients, say {x1, y1} and {x2, y2}, so that these invariants
hold:

a(k) = x
(k)
1 a+ y

(k)
1 b, b(k) = x

(k)
2 a+ y

(k)
2 b, (2)

where the superscript k keeps track of the k-iteration in the algorithm. The al-
gorithm begins by setting: x(0)1 = 1, y(0)1 = 0 and x

(0)
2 = 0, y(0)2 = 1. The
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invariant is clearly satisfied. At the end, when b(K) = 0, note that we have
gcd(a, b) = a(K) = x

(K)
1 a + y

(K)
1 b which yields the solution. What remains is

to show that we can compute the pair of coefficients moving forward. So, having
(2) in hand, since a(k+1) = b(k) we immediately have

x
(k+1)
1 = x

(k)
2 , y

(k+1)
1 = y

(k)
2 .

Furthermore, b(k+1) = a(k) mod b(k) (by definition of Euclid’s algorithm). More-
over, the remainder is a linear combination of a(k) and b(k):

b(k+1) = a(k) − qb(k) (3)
= [x

(k)
1 a+ y

(k)
1 b]− q[x(k)2 a+ y

(k)
2 b] (4)

= [x
(k)
1 − qx

(k)
2 ]a+ [y

(k)
1 − qy

(k)
2 ]b (5)

= x
(k+1)
2 a+ y

(k+1)
2 b (6)

Theorem 3. (Fermat’s Little Theorem)
Let p be a prime number. Then, for any a 6≡ 0 (mod p), we have

ap−1 ≡ 1 (mod p). (7)

Proof. First, note that the map fa(x) ≡ ax (mod p) is a bijection, for any a 6≡ 0
(mod p). The claim follows by observing the following equivalent products:∏

x 6≡0

x ≡
∏
x 6≡0

fa(x) ≡ ap−1
∏
x 6≡0

x. (8)

The first equivalence follows since fa is bijective whereas the second is from
commutativity. Since each x has an inverse modulo p, we have proved our claim.

Exercise 2. Prove Euler-Fermat’s Little Theorem. Let n be any integer. Then, for
any a 6≡ 0 (mod n), we have aφ(n) ≡ 1 (mod n).

Theorem 4. (Chinese Remainder Theorem)
Let n = pq where p and q are two distinct primes. Suppose that z ≡ a (mod p)
and z ≡ b (mod q) hold simultaneously. Then, there is a unique z mod n which
satisfies the above two congruences.
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Proof. Suppose we have two numbers αp and αq with the properties:

αp ≡
{

1 (mod p)
0 (mod q)

αq ≡
{

0 (mod p)
1 (mod q)

(9)

Then, z = (aαp + bαq) mod n is our solution. Since gcd(p, q) = 1, there are
integers x and y so that 1 = xp+yq. The proof is done by observing that αp = yq
and αq = xp satisfy (9).

Exercise 3. Extend the Chinese Remainder Theorem to allow pairwise relatively
prime moduli and also to the case for more than two simultaneous congruences.

Lemma 1. Let p be a prime and suppose p|ab for two integers a and b. Then, p|a
or p|b.

Proof. If p|a, then we are done. Suppose p does not divide a, and thus gcd(p, a) =
1. By the extended Euclidean algorithm, there are integers x and y so that 1 =
xp+ ya. This shows b = xpb+ y(ab), whereby p|b follows.

Lemma 2. If p is prime, then the quadratic equation x2 ≡ 1 (mod p) has exactly
two solutions, namely x ≡ ±1 (mod p).

Proof. First, we rewrite the quadratic equivalently as x2 − 1 ≡ 0 (mod p) which
implies p|(x − 1)(x + 1). Thus, either p|(x − 1) (from which x ≡ +1 (mod p)
follows) or p|(x+ 1) (from which x ≡ −1 (mod p) follows). There are no other
possibilities.
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