CS181A Notes #2 Basic Number Theory
Theorem 1. (Euclid) There are infinitely many prime numbers.

Proof. Suppose there are only finitely many primes, say {pi, p2, - .., Pm}. Since
any number is divisible by some prime, ¢ = pips...pn + 1 must be divisible
by some prime, say p;, from the list. But this implies p; divides 1, which is a
contradiction. 0

Exercise 1. Extend the proof to primes of the form 4k + 3, for a positive integer
k. What about primes of the form 4k + 1?2

Theorem 2. (Euclid’s GCD algorithm)
For any integers a and b, where a > b > 0, we have

_Joa ifb=20
ged(a,b) = { ged(b,a mod b)  if b >0 M

Proof. The base case is clear. We need to show that ged(a, b) = ged(b, a mod b)
fora > b > 0. Let r = amod b. Then, r = a — qb, for some quotient ¢ with
0 < 7 < b. Suppose d = ged(a,b) and e = ged(b,r). It is clear that d|b (by
definition) and that d|r (since r is a linear combination of a and b). Thus, d|e
since e = ged(b,r). Similarly, e|d given that it divides both b and r and that
a = qb + r. Therefore, d = e. O

Corollary 1. (Pulverizer of Aryabhata)
For any integers a > b > 0, where d = gcd(a, b), there are integers x,y € 7 so
that

d = xa + yb.

Moreover, d is the smallest positive member of the set {za + yb : z,y € Z}.

Finding Aryabhata: There is a natural way of adapting Euclid’s algorithm to re-
cursively compute the extended constants x and y so that d = xa + yb. But a
simpler algorithm is the following iterative version. Given the numbers a and b,
allocate two pairs of coefficients, say {x1, y1 } and {z2, y2 }, so that these invariants
hold:

a(k) — x(lk)a + yik)b, b(k) — xgk)a + yék)b, (2)

where the superscript k& keeps track of the k-iteration in the algorithm. The al-
gorithm begins by setting: x§°) =1, y%o) = 0 and xéo) = 0, yéo) = 1. The



invariant is clearly satisfied. At the end, when bE) = 0, note that we have
ged(a,b) = alf) = ng)a + yiK)b which yields the solution. What remains is
to show that we can compute the pair of coefficients moving forward. So, having
(2) in hand, since a**V = b*) we immediately have
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Furthermore, b*t1) = ¢(®) mod b (by definition of Euclid’s algorithm). More-
over, the remainder is a linear combination of a*) and b(*):

b = k) gpR) (3)
= [+ "0 — qleda +450) )

2" — gz + [y — quslb (5)
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Theorem 3. (Fermat’s Little Theorem)
Let p be a prime number. Then, for any a 20 (mod p), we have

a?'=1 (mod p). (7)

Proof. First, note that the map f,(z) = ax (mod p) is a bijection, for any a Z 0
(mod p). The claim follows by observing the following equivalent products:

H r = H fo(z) =a! Hx (8)

xZ£0 zZ£0 zZ0

The first equivalence follows since f, is bijective whereas the second is from

commutativity. Since each z has an inverse modulo p, we have proved our claim.
[

Exercise 2. Prove Euler-Fermat’s Little Theorem. Let n be any integer. Then, for
any a Z 0 (mod n), we have a®™ =1 (mod n).

Theorem 4. (Chinese Remainder Theorem)

Let n = pq where p and q are two distinct primes. Suppose that z = a (mod p)
and z = b (mod q) hold simultaneously. Then, there is a unique z mod n which
satisfies the above two congruences.



Proof. Suppose we have two numbers «,, and o, with the properties:

_ [ 1 (modp) _ [ 0 (mod p)
U = { 0 (mod q) Ga = { 1 (mod q) ©)

Then, z = (aa, + bay,) mod n is our solution. Since ged(p, ¢) = 1, there are
integers x and y so that 1 = xp +yq. The proof is done by observing that o, = yg
and o, = xp satisfy (9). O

Exercise 3. Extend the Chinese Remainder Theorem to allow pairwise relatively
prime moduli and also to the case for more than two simultaneous congruences.

Lemma 1. Let p be a prime and suppose plab for two integers a and b. Then, p|a
or p|b.

Proof. 1f p|a, then we are done. Suppose p does not divide a, and thus ged(p, a) =
1. By the extended Euclidean algorithm, there are integers x and y so that 1 =
xp + ya. This shows b = zpb + y(ab), whereby p|b follows. O

Lemma 2. If p is prime, then the quadratic equation x> = 1 (mod p) has exactly

two solutions, namely x = +1 (mod p).

Proof. First, we rewrite the quadratic equivalently as > — 1 = 0 (mod p) which
implies p|(x — 1)(z + 1). Thus, either p|(z — 1) (from which z = +1 (mod p)
follows) or p|(z + 1) (from which x = —1 (mod p) follows). There are no other
possibilities. 0



