CS181A Notes #2 Basic Number Theory

Theorem 1. (Euclid) There are infinitely many prime numbers.

Proof. Suppose there are only finitely many primes, say $\{p_1, p_2, \ldots, p_m\}$. Since any number is divisible by some prime, $q = p_1 p_2 \ldots p_m + 1$ must be divisible by some prime, say p_j , from the list. But this implies p_j divides 1, which is a contradiction.

Exercise 1. Extend the proof to primes of the form 4k + 3, for a positive integer k. What about primes of the form 4k + 1?

Theorem 2. (Euclid's GCD algorithm) For any integers a and b, where $a \ge b \ge 0$, we have

$$gcd(a,b) = \begin{cases} a & \text{if } b = 0\\ gcd(b, a \mod b) & \text{if } b > 0 \end{cases}$$
(1)

Proof. The base case is clear. We need to show that $gcd(a, b) = gcd(b, a \mod b)$ for $a \ge b > 0$. Let $r = a \mod b$. Then, r = a - qb, for some quotient q with 0 < r < b. Suppose d = gcd(a, b) and e = gcd(b, r). It is clear that d|b (by definition) and that d|r (since r is a linear combination of a and b). Thus, d|e since e = gcd(b, r). Similarly, e|d given that it divides both b and r and that a = qb + r. Therefore, d = e.

Corollary 1. (Pulverizer of Aryabhata)

For any integers $a \ge b \ge 0$, where d = gcd(a, b), there are integers $x, y \in \mathbb{Z}$ so that

$$d = xa + yb.$$

Moreover, d is the smallest positive member of the set $\{xa + yb : x, y \in \mathbb{Z}\}$ *.*

Finding Aryabhata: There is a natural way of adapting Euclid's algorithm to recursively compute the *extended* constants x and y so that d = xa + yb. But a simpler algorithm is the following iterative version. Given the numbers a and b, allocate two pairs of coefficients, say $\{x_1, y_1\}$ and $\{x_2, y_2\}$, so that these invariants hold:

$$a^{(k)} = x_1^{(k)}a + y_1^{(k)}b,$$
 $b^{(k)} = x_2^{(k)}a + y_2^{(k)}b,$ (2)

where the superscript k keeps track of the k-iteration in the algorithm. The algorithm begins by setting: $x_1^{(0)} = 1$, $y_1^{(0)} = 0$ and $x_2^{(0)} = 0$, $y_2^{(0)} = 1$. The

invariant is clearly satisfied. At the end, when $b^{(K)} = 0$, note that we have $gcd(a,b) = a^{(K)} = x_1^{(K)}a + y_1^{(K)}b$ which yields the solution. What remains is to show that we can compute the pair of coefficients moving forward. So, having (2) in hand, since $a^{(k+1)} = b^{(k)}$ we immediately have

$$x_1^{(k+1)} = x_2^{(k)}, y_1^{(k+1)} = y_2^{(k)}$$

Furthermore, $b^{(k+1)} = a^{(k)} \mod b^{(k)}$ (by definition of Euclid's algorithm). Moreover, the remainder is a linear combination of $a^{(k)}$ and $b^{(k)}$:

$$b^{(k+1)} = a^{(k)} - qb^{(k)}$$
(3)

$$= [x_1^{(k)}a + y_1^{(k)}b] - q[x_2^{(k)}a + y_2^{(k)}b]$$
(4)

$$= [x_1^{(k)} - qx_2^{(k)}]a + [y_1^{(k)} - qy_2^{(k)}]b$$
(5)

$$= x_2^{(k+1)}a + y_2^{(k+1)}b (6)$$

Theorem 3. (*Fermat's Little Theorem*) Let p be a prime number. Then, for any $a \not\equiv 0 \pmod{p}$, we have

$$a^{p-1} \equiv 1 \pmod{p}. \tag{7}$$

Proof. First, note that the map $f_a(x) \equiv ax \pmod{p}$ is a bijection, for any $a \not\equiv 0 \pmod{p}$. The claim follows by observing the following equivalent products:

$$\prod_{x \neq 0} x \equiv \prod_{x \neq 0} f_a(x) \equiv a^{p-1} \prod_{x \neq 0} x.$$
(8)

The first equivalence follows since f_a is bijective whereas the second is from commutativity. Since each x has an inverse modulo p, we have proved our claim.

Exercise 2. Prove Euler-Fermat's Little Theorem. Let n be any integer. Then, for any $a \not\equiv 0 \pmod{n}$, we have $a^{\phi(n)} \equiv 1 \pmod{n}$.

Theorem 4. (*Chinese Remainder Theorem*)

Let n = pq where p and q are two distinct primes. Suppose that $z \equiv a \pmod{p}$ and $z \equiv b \pmod{q}$ hold simultaneously. Then, there is a unique $z \mod{n}$ which satisfies the above two congruences. *Proof.* Suppose we have two numbers α_p and α_q with the properties:

$$\alpha_p \equiv \begin{cases} 1 \pmod{p} \\ 0 \pmod{q} \end{cases} \qquad \qquad \alpha_q \equiv \begin{cases} 0 \pmod{p} \\ 1 \pmod{q} \end{cases} \tag{9}$$

Then, $z = (a\alpha_p + b\alpha_q) \mod n$ is our solution. Since gcd(p,q) = 1, there are integers x and y so that 1 = xp + yq. The proof is done by observing that $\alpha_p = yq$ and $\alpha_q = xp$ satisfy (9).

Exercise 3. *Extend the Chinese Remainder Theorem to allow pairwise relatively prime moduli and also to the case for more than two simultaneous congruences.*

Lemma 1. Let p be a prime and suppose p|ab for two integers a and b. Then, p|a or p|b.

Proof. If p|a, then we are done. Suppose p does not divide a, and thus gcd(p, a) = 1. By the extended Euclidean algorithm, there are integers x and y so that 1 = xp + ya. This shows b = xpb + y(ab), whereby p|b follows.

Lemma 2. If p is prime, then the quadratic equation $x^2 \equiv 1 \pmod{p}$ has exactly two solutions, namely $x \equiv \pm 1 \pmod{p}$.

Proof. First, we rewrite the quadratic equivalently as $x^2 - 1 \equiv 0 \pmod{p}$ which implies p|(x-1)(x+1). Thus, either p|(x-1) (from which $x \equiv +1 \pmod{p}$ follows) or p|(x+1) (from which $x \equiv -1 \pmod{p}$ follows). There are no other possibilities.