
CS181A Notes #1

Entropy Let Σ be a finite set (alphabet) of size n. Consider a probability
distribution P defined over Σ. When the context is clear, we identify Σ with
[n] = {1, 2, . . . , n}. A coding scheme C is an assignment of binary sequences
to each symbol in Σ. Thus, C is a mapping from Σ to {0, 1}?. Given a symbol
σ ∈ Σ, the code length of C(σ) is the length of that binary sequence, denoted by
|C(σ)|. A source X is a random variable whose value is in Σ. The average code
length of coding scheme C for X is given by

LX(C) = E|C(X)| =
n∑

i=1

P (X = i) |C(i)|.

Let the entropy function H(P ) of a probability distribution P be defined as

H(P ) = −
n∑

i=1

P (i) log2 P (i).

The entropy of a random variable is equivalent to the entropy of its underlying
distribution. Some basic facts about entropy is given below:

1. If |X | = n then H(X) ≤ log2 n.

2. (Additive law) H(X, Y ) ≤ H(X) + H(Y ) (equality iff X and Y are inde-
pendent).

3. (Conditional law) H(X, Y ) = H(X) + H(Y |X).

4. (Conditioning reduces entropy) H(X|Y ) ≤ H(X) (equality iffX and Y are
independent).

Note that the conditional entropy H(X|Y = y) is defined as the entropy of X
over the conditional distribution P[X|Y = y]. The conditional entropy H(X|Y )
is then defined as the average over y of H(X|Y = y).

Shannon proved the following beautiful lower bound for any coding scheme
(no matter how clever).

Theorem 1. (Shannon) Given any coding scheme C for a source X , its average
code length cannot be strictly smaller than the entropy of the source. Namely,

min
C
LX(C) ≥ H(X).
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Remark 1. The four entropic laws above follows from Jensen’s Inequality: For
any concave function f , we have

E[f(X)] ≤ f(E[X]). (1)

Remark 2. The Huffman coding scheme satisfies LX(HUFFMAN) ≤ H(X)+1.

Exercise 1. Determine the entropy of English. Find a natural language with the
highest entropy. What about the highest redundancy?

Cryptosystem A cryptosystem is a five-tuple (P ,K, C, E ,D), where P is the
plaintext space, K is the key space, C is the ciphertext space, E is the space of
all encryption algorithms and D is the space of all decryption algorithms. Let P
be a prior distribution over P (prior knowledge of attacker) and let K be distri-
bution over the key space (corresponds to the random choice of secret keys). We
assume also a choice of encryption and decryption algorithms over a collection
of possible alternatives. This induces a distribution C over the ciphertext space.
In what follows, let X , K (abuse of notation), Y be random variables denoting
the plaintext, key and ciphertext, respectively. Also, let e and d be the particular
choice of algorithms used for encryption and decryption.

Definition 1. A cryptosystem achieves perfect secrecy if

P[X = x|Y = y] = P[X = x]. (2)

By Bayes’s law, perfect secrecy is equivalent to

P[X = x|Y = y] =
P[Y = y|X = x]P[X = x]

P[Y = y]
. (3)

So, we achieve perfect secrecy if

P[Y = y|X = x] = P[Y = y]. (4)

Exercise 2. Confirm that the One-Time Pad protocol has perfect secrecy.

Let L be a language over P?. So, L is the set of all finite strings over the
alphabet P . Let P n denote the distribution induced by P on Pn. The entropy of
L is defined as

HL = lim
n→∞

H(P n)

n
. (5)

2



The redundancy of L is defined as

RL = 1− HL

log2 |P|
. (6)

Note that a random language has zero redundancy.
Given a ciphertext y ∈ Cn, the set of possible keys for y is defined as

K(y) = {k ∈ K : ∃x ∈ Pn with P[X = x] > 0 and ek(x) = y}. (7)

Given a ciphertext y, a key is called spurious if it is a possible but incorrect key.
The number of spurious keys given the ciphertext y is |K(y)| − 1. Let sn be the
average of the number of spurious keys over different values of y. Thus,

sn = E[|K(Y )| − 1] = E[|K(Y )|]− 1. (8)

Claim 1.
H(K|Cn) = H(K) + H(P n)−H(Cn). (9)

Note that

H(Cn) ≤ n log2 |C| (10)
H(P n) ∼= nHL = n(1−RL) log2 |P|. (11)

For simplicity, assume the plaintext and ciphertext spaces are of the same size,
that is, |P| = |C|. Thus,

H(K|Cn) ≥ H(K)− nRL log2 |P|. (12)

Moreover,

H(K|Cn) = E[H(K|Y )] ≤ E[log2 |K(Y )|] ≤ log2 E[|K(Y )|] = log2(sn + 1).
(13)

Thus, assuming the uniform distribution on the keyspace, we get

nRL log2 |P| ≥ log2 |K| − log2(sn + 1). (14)

The unicity distance of a cryptosystem is a value n̂ so that sn̂ = 0. Using the
previous inequality, we get

n̂ ∼=
log2 |K|

RL log2 |P|
. (15)
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A Entropy proofs
For brevity, we use the following shorthands:

p(a) = Pr[X = a]

p(b) = Pr[Y = b]

p(a, b) = Pr[X = a, Y = b]

p(a|b) = Pr[X = a|Y = b]

Theorem 2. Ent(X) ≤ log2 |A|, where X ranges over A.

Proof. By the definition of H(X), we have

H(X) =
∑
a∈A

p(a) log(1/p(a)) ≤ log
∑
a

1 = log |A|,

where the inequality follows from Jensen’s inequality.

Theorem 3. H(X, Y ) = H(X|Y ) + H(Y ).

Proof. By the definition of H(X, Y ), we have

H(X, Y ) =
∑
a,b

p(a, b) log
1

p(a, b)

=
∑
a,b

p(a, b)

[
log

1

p(a|b)
+ log

1

p(b)

]
=

∑
a,b

p(a, b) log
1

p(a|b)
+
∑
a,b

p(a, b) log
1

p(b)

=
∑
b

p(b)
∑
a

p(a|b) log
1

p(a|b)
+
∑
b

p(b) log
1

p(b)

∑
a

p(a|b)

=
∑
b

p(b)H(X|Y = b) + +
∑
b

p(b) log
1

p(b)

= H(X|Y ) + H(Y ).

Theorem 4. H(X|Y ) ≤ H(X).

4



Proof. We show that H(X|Y )−H(X) ≤ 0.

H(X|Y )−H(X) =
∑
b

p(b)H(X|Y = b)−
∑
a

p(a) log
1

p(a)

=
∑
b

p(b)
∑
a

p(a|b) log
1

p(a|b)
−
∑
a

p(a) log
1

p(a)

=
∑
a,b

p(a, b) log
1

p(a|b)
−
∑
a

p(a) log
1

p(a)

∑
b

p(b|a)

=
∑
a,b

p(a, b)

[
log

1

p(a|b)
− log

1

p(a)

]
=

∑
a,b

p(a, b) log
p(a)

p(a|b)
=
∑
a,b

p(a, b) log
p(a)p(b)

p(a, b)

≤ log
∑
a,b

p(a)p(b) = log 1 = 0.

Theorem 5. H(X, Y ) ≤ H(X) + H(Y ).

Proof. Since H(X, Y ) = H(X|Y ) + H(Y ) and H(X|Y ) ≤ H(X), the claim
holds.
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