CS181A Notes #1

Entropy Let X be a finite set (alphabet) of size n. Consider a probability
distribution P defined over >. When the context is clear, we identify > with
n] = {1,2,...,n}. A coding scheme C'is an assignment of binary sequences
to each symbol in . Thus, C' is a mapping from ¥ to {0, 1}*. Given a symbol
o € X, the code length of C'(0) is the length of that binary sequence, denoted by
|C'(0)]. A source X is a random variable whose value is in 3. The average code
length of coding scheme C for X is given by

Lx(C) = E|C(X)| = )  P(X =) |C(i)].
=1
Let the entropy function H(P) of a probability distribution P be defined as

H(P) = — Z P(i)logy P(i).

The entropy of a random variable is equivalent to the entropy of its underlying
distribution. Some basic facts about entropy is given below:

1. If |X| = n then H(X) < log, n.

2. (Additive law) H(X,Y) < H(X) + H(Y) (equality iff X and Y are inde-
pendent).

3. (Conditional law) H(X,Y) = H(X) + H(Y|X).

4. (Conditioning reduces entropy) H(X|Y) < H(X) (equality iff X and Y are
independent).

Note that the conditional entropy H(X|Y = y) is defined as the entropy of X
over the conditional distribution P[X|Y" = y|. The conditional entropy H(X|Y")
is then defined as the average over y of H(X |Y = y).

Shannon proved the following beautiful lower bound for any coding scheme
(no matter how clever).

Theorem 1. (Shannon) Given any coding scheme C' for a source X, its average
code length cannot be strictly smaller than the entropy of the source. Namely,

mcinLX(C) > H(X).



Remark 1. The four entropic laws above follows from Jensen’s Inequality: For
any concave function f, we have

E[f(X)] < f(E[X]). (D
Remark 2. The Huffiman coding scheme satisfies Lx (HUFFMAN) < H(X)+ 1.

Exercise 1. Determine the entropy of English. Find a natural language with the
highest entropy. What about the highest redundancy?

Cryptosystem A cryptosystem is a five-tuple (P, KC,C, £, D), where P is the
plaintext space, K is the key space, C is the ciphertext space, £ is the space of
all encryption algorithms and D is the space of all decryption algorithms. Let P
be a prior distribution over P (prior knowledge of attacker) and let K be distri-
bution over the key space (corresponds to the random choice of secret keys). We
assume also a choice of encryption and decryption algorithms over a collection
of possible alternatives. This induces a distribution C' over the ciphertext space.
In what follows, let X, K (abuse of notation), Y be random variables denoting
the plaintext, key and ciphertext, respectively. Also, let e and d be the particular
choice of algorithms used for encryption and decryption.

Definition 1. A cryptosystem achieves perfect secrecy if
PX =z|Y =y| =P[X = z]. (2)
By Bayes’s law, perfect secrecy is equivalent to

PlY =y|X = z|P[X = x]

PX =z|Y =y| = 3)
A== Py =y
So, we achieve perfect secrecy if
PIY = y|X = a] = P[Y =y]. )

Exercise 2. Confirm that the One-Time Pad protocol has perfect secrecy.

Let L be a language over P*. So, L is the set of all finite strings over the
alphabet P. Let P" denote the distribution induced by P on P". The entropy of
L is defined as H(pn

Hp = lim M 5)

n—o0 n
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The redundancy of L is defined as

Hy

Ry =1-— )
g log, |P‘

(6)

Note that a random language has zero redundancy.
Given a ciphertext y € C", the set of possible keys for y is defined as

K(y) ={k € K: 3z € P" with P[X = z] > 0 and ex(x) = y}. (7)

Given a ciphertext y, a key is called spurious if it is a possible but incorrect key.
The number of spurious keys given the ciphertext y is |K(y)| — 1. Let s,, be the
average of the number of spurious keys over different values of y. Thus,

sn = E[[K(Y)] = 1] = E[[K(Y)|] - 1. (8)
Claim 1.

H(K|C") = H(K) + H(P") — H(C™). 9)
Note that

H(C") < nlog,|C| (10)

H(P") = nHp=n(l-— Ry)log,|P]. (11)
For simplicity, assume the plaintext and ciphertext spaces are of the same size,
that is, |P| = |C|. Thus,

H(K|C") > H(K) — nRy log, |P|. (12)

Moreover,

H(K|C™) = E[H(K[Y)] < Eflog, [K(Y)[] < log, E[[K(Y)]] = logy(sn + 1).
(13)
Thus, assuming the uniform distribution on the keyspace, we get

nRy log, |P| > log, |K| — log, (s, + 1). (14)

The unicity distance of a cryptosystem is a value n so that s; = 0. Using the

previous inequality, we get
log, |K|

Ry log, |P|

>~

(15)

n



A Entropy proofs

For brevity, we use the following shorthands:

p(a) Pr[X = q]

(b) = Pr[Y =1
pla,b) = PrlX =a,Y =10
p(ald) = Pr[X =alY =0

Theorem 2. Ent(X) < log, |A|, where X ranges over A.

Proof. By the definition of H(X'), we have

acA

where the inequality follows from Jensen’s inequality.
Theorem 3. H(X,Y) = H(X|Y) + H(Y).
Proof. By the definition of H(X,Y'), we have

H(X,Y) = Z p(a,b)log

a,b

] 1
= > »la,b) {log plalp) T8 sz)}

a,b

p(a,b)

1 1
= Zp(a, b) log o(alb) + Zp(a, b) log o)

a,b a,b

_ Z Zp alb) log ]b —i—ZP og
_ Zp(b)H(Xleb)JrJrzp(b)lOg;%

b
= H(X|Y) + H(Y).

Theorem 4. H(X|Y) < H(X).

= p(a)log(1/p(a)) <log» 1 =log|A],

Zp alb)



Proof. We show that HI(X|Y') — H(X) < 0.
H(X]Y) - H(X) = ;pw)H(X\Y =b>—;p<a> log,ﬁ
_ Zp(b)Zma!b)log : )—;p(a)loglﬁ
— 3 p(a,b) log =5 Zp )log )Zp(bla)

a,b b
1 1
= ;p(a ,b) [log (a|b) — log m]
= Zp a,b) log ZP a,b)log ()pz()l)))
< log Zp =logl=0
a,b

Theorem 5. H(X,Y) < H(X) + H(Y).

Proof. Since H(X,Y) = H(X|Y) + H(Y) and H(X]Y) < H(X), the claim
holds. O]



