CS181A Notes \#0

One-time pad Alice wants to send a one-bit message $b \in\{0,1\}$ to Bob. They share a communication channel which is insecure due to the presence of an eavesdropper Eve. The goal is have Bob receive the bit b but without Eve having any knowledge of it.

Secret key Suppose that Alice and Bob share between them a secret uniform random bit $r \in\{0,1\}$. Eve has no knowledge of this random bit.

Encryption Alice encrypts her plaintext bit b into a ciphertext bit

$$
\begin{equation*}
\hat{b}=b \oplus r \tag{1}
\end{equation*}
$$

Alice then sends \hat{b} to Bob over the insecure channel.

Decryption Bob decrypts by computing the ciphertext bit as follows:

$$
\begin{equation*}
b=\hat{b} \oplus r \tag{2}
\end{equation*}
$$

This holds since XOR (exclusive OR) is associative.

Security Eve cannot determine b from \hat{b} since the latter is a uniform random bit. The one-time pad protocol is unconditionally secure (or information-theoretically secure).

Two-bit message Suppose Alice wants to send a two-bit message $b_{1} b_{2} \in\{0,1\}^{2}$ but with only a one-bit random key $r \in\{0,1\}$. Here, she sends $\hat{b}_{1}=b_{1} \oplus r$ and $\hat{b}_{2}=b_{2} \oplus r$ to Bob over the insecure channel. Then, Eve can find out if b_{1} are b_{2} are the same or not.

