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1. INTRODUCTION 

A complete specification of a programming 
language must perform at least two func- 
tions. First, it must specify the syntax of the 
language; that  is, which strings of symbols 
are to be deemed well-formed programs. 
Second, it must specify the semantics of the 
language; that  is, what meaning or intent 
should be at tr ibuted to each syntactically 
correct program. 

A compiler for a programming language 
must verify that  its input obeys the syntactic 
conventions of the language specification. I t  
must also translate its input into an object 
language program in a manner that  is con- 
sistent with the semantic specification of the 
language. In addition, if the input contains 
syntactic errors, the compiler should an- 
nounce their presence and t ry  to pinpoint 
their location. To help perform these func- 
tions every compiler has a device within it 
called a parser. 

A context-free grammar can be used to 
help specify the syntax of a programming 
language. In addition, if the grammar is de- 
signed carefully, much of the semantics of 
the language can be related to the rules of 
the grammar. 

There are many different types of parsers 
for context-free grammars. In this paper we 

shall restrict ourselves to a class of parsers 
known as LR parsers. These parsers are 
efficient and well suited for use in compilers 
for programming languages. Perhaps more 
important  is the fact that  we can automati-  
cally generate LR parsers for a large and use- 
ful class of context-free grammars. The pur- 
pose of this article is to show how LR parsers 
can be generated from certain context-free 
grammars, even some ambiguous ones. An 
important  feature of the parser generation 
algorithm is the automatic detection of 
ambiguities and difficult-to-parse constructs 
in the language specification. 

We begin this paper by showing how a 
context-free grammar defines a language. 
We then discuss LR parsing and outline the 
parser generation algorithm. We conclude 
by showing how the performance of LR 
parsers can be improved by a few simple 
transformations, and how error recovery and 
"semantic actions" can be incorporated into 
the LR parsing framework. 

For the purposes of this paper, a sentence 
is a string of terminal symbols. Sentences are 
written surrounded by a pair of single quotes. 
For example, 'a', 'ab', and ',' are sentences. 
The empty sentence is written ". Two sen- 
tences written contiguously are to be con- 
catenated, thus 'a' 'b' is synonymous with 
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2. GRAMMARS 

A g r a m m a r  is used to define a language arid 
to impose a s t ructure  on each sentence in 
the language. We shall be exclusively con- 
cerned with context-free grammars, sometimes 
called B N F  (for Backus -Naur  form) specifi- 
cations. 

In  a context-free grammar ,  we specify 
two disjoint sets of symbols  to help define a 
language. One is a set of nonterminal symbols. 
We shall represent a nonterminal  symbol  by 
a str ing of one or more capital  roman  letters. 
For example, L I S T  represents a nonterminal  
as does the letter A. In  the g rammar ,  one 
nonterminal  is dist inguished as a start (or 
sentence) symbol .  

The  second set of symbols  used in a con- 
text-free g r a m m a r  is the set of termznal 
symbols. The sentences of the language gen- 
erated by  a g r a m m a r  will contain  only  
terminal  symbols.  We shall refer to a termi-  
hal or nontcrminal  symbol  as a grammar 
symbol. 

A context-free g r a m m a r  itself consists of a 
finite set of rules called productzons. A 
product ion  has the form 

left-side ~ right-side, 

where left-side is a single nonterminal  symbol  
(sometimes called a syntact ic  category)  and 
right-side is a s tr ing of zero or more g r a m m a r  
symbols.  The  ar row is s imply a special 
symbol  t ha t  separates the left and r ight  
sides. For  example, 

L I S T  ~ L I S T  ' , '  E L E M E N T  

is a product ion  in which L I S T  and E L E -  
M E N T  are nonterminal  symbols,  and the  
quoted  comma represents a terminal  sym- 
bol. 

A g r a m m a r  is a rewrit ing system. If  aA'r 
is a s tr ing of g r a m m a r  symbols  and A --+ fl 
is a product ion,  then  we write 

~A-y ~ a~7 

and say tha t  aA'y directly derives a~'y. A 
sequence of strings 



s 0 ,  S l ,  - - -  , S n  

such tha t  s,-~ ~ s ,  for 1 ~< i ~< n is said to 
be a derwalwn of s~ from ~0. We sometimes 
also say s~ is derivable from s0. 

The s tar t  symbol of a g rammar  is called a 
sentent,al form. A string derivable from the 
s tar t  symbol is also a sententml form of the 
grammar.  A sentential form containing only 
terminal symbols is said to be a sentence 
generated by the grammar.  The language 
generated by a grammar (;, often denoted 
by L(G), is the set of sentences generated by 
G. 

Example 2.1: The following grammar,  
hereafter called G~, has L IST  as its s tar t  
symbol:  

L IST  --~ LIST ' , '  E L E M E N T  
LIST --* E L E M E N T  
E L E M E N T  ~ 'a '  
E L E M E N T  --~ 'b' 

The sequence: 

LIST ~ L IST  ' , '  E L E M E N T  
LIST  ' ,a '  
L IST  ' , '  E L E M E N T  ' ,a '  
L IST ',b,a' 
E L E M E N T  ',b,a' 
'a,b,a' 

is a derivation of the sentence 'a,b,a'. L(G~) 
consists of nonempty strings of a 's  and b's, 
separated by commas. 

Note that  in the derivation in Example 
2.1, the rightmost nonterminal in each sen- 
tential form is rewritten to obtain the fol- 
lowing sentential form. Such a derivation is 
said to be a r~ghlmost der~valzo~ and each sen- 
tential form in such a derivation is called a 
mght se~le~t~al form. For example, 

L IST  ',b,a' 

is a right sentential form of C1. 
If s A w  is a right sentential form in which 

w is a string of terminal symbols, and s A w ~  
s~w, then ~ is said to be a handle of s~w * 
For example, 'b' is the handle of the right 
sentential form 

LIST  ',b,a' 

in Example  2.1. 

• S o m e  a u t h o r s  u s e  a m o r e  r e s t m c t m g  d e h n l t m n  o f  
h a n d l e  
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A prefix of a~ in the right sentential form 
af3w is said to be a wable prefix of the gram- 
mar. For example, 

L IST  ' , '  

is a viable prefix of G1, since it is a prefix of 
the right sentential form, 

L IST  ' , '  E L E M E N T  

(Both s and w are null here.) 
Restating this definition, a viable prefix of 

a g rammar  is any prefix of a right sentential 
form tha t  does not extend past  the right end 
of a handle in tha t  right sentential form. 
Thus we know that  there is always some 
string of g rammar  symbols tha t  can be ap- 
pended to the end of a viable prefix to ob- 
tain a right sentential form. Viable prefixes 
arc important  in the construction of com- 
pilers with good error-detecting capabilities, 
as long as the portion of the input we have 
seen can be derived from a viable prefix, 
we can be sure tha t  there are no errors tha t  
can be detected having scanned only tha t  
par t  of the input. 

3. DERIVATION TREES 

Frequently, our interest in a g rammar  is 
not only in the language it generates, but  
also in the structure it imposes on the sen- 
tences of the language. This is the case be- 
cause grammatical  analysis is closely con- 
nected with other processes, such as compila- 
tion and translation, and the translations or 
actions of the other processes are frequently 
defined in terms of the productions of the 
grammar.  With this in mind, we turn our 
at tention to the representation of a deriva- 
tion by  its demvatwn tree. 

For each derivation in a g rammar  we can 
construct a corresponding derivation tree. 
Let us consider the derivation in Example  
2.1. To model the first step of the derivation, 
in which LIST is rewrit ten as 

L IST  ' , '  E L E M E N T  

using production 1, we first create a root 
labeled by the s tar t  symbol LIST,  and then 
create three direct descendants of the root, 
labeled LIST,  ', ', and E L E M E N T :  
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• ,ST ) ~) -"" 
(We follow historical usage and draw our 
" roo t"  node at  the top.) In  the second step 
of the derivation, E L E M E N T  is rewrit ten 
as 'a'. To model this step, we create a direct 
descendant labeled 'a' for the node labeled 
E L E M E N T :  

LIST ) 

( LIST~ (~ ~LEMENT~) 

Continuing in this fashion, we obtain the 
following tree: 

Note  tha t  if a node of the derivation tree is 
labeled with a nonterminal symbol A and its 
direct descendants are labeled X1, X2, - . .  , 
X, ,  then the production. 

A - - ~ X 1 X 2 . . .  Xn 

must  be in the grammar.  
If  a~, a2, . . .  , am are the labels of all the 

leaves of a derivation tree, in the natural  
left-to-right order, then the string 

al  a2 • • • a m  

is called the frontier of the tree. For example, 
'a,b,a' is the frontier of the previous tree. 
Clearly, for every sentence in a language 

there is at least one derivation tree with 
that  sentence as its frontier. A grammar  tha t  
admits  two or more distinct derivation trees 
with the same frontier is said to be ambigu- 
ous. 

Example  3.1: The g rammar  G2 with pro- 
ductions 

L IST  --* L I S T  ' , '  L I S T  
LIST  --~ 'a' 
L I S T  --* 'b' 

is ambiguous because the following two 
derivation trees have the same frontier. 

( 
LIST ) 

• ,ST ~ ©  ~ .,ST ~ 
@< ,,s, ~ © ¢ ,,ST 

® @ 
) 

LIST 
G 

LIST ) 
L,,T ~ © ~ ,,,T 

~ © ~  L,,T ~ ~ 
) 

In  certain situations ambiguous grammars  
can be used to represent programming 
languages more economically than  equiva- 
lent unambiguous grammars.  However, if an 
ambiguous g rammar  is used, then some other 
rules should be specified along with the 
g rammar  to determine which of several 
derivation trees is to be associated with a 
given input. We shall have more to say 
about  ambiguous grammars  in Section 7. 

4. PARSERS 
We can consider a parser for a g rammar  to be 
a device which, when presented with an 
input string, a t tempts  to construct a deriva- 
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tion tree whose frontier matches the input. 
If the parser can construct such a derivation 
tree, then it will have verified that the input 
string is a sentence of the language generated 
by the grammar. If the input is syntactically 
incorrect, then the tree construction process 
will not succeed and the positions at which 
the process falters can be used to indicate 
possible error locations. 

A parser can operate in many different 
ways. In this paper we shall restrict ourselves 
to parsers that examine thc input string 
from left to right, one symbol at a time. 
These parsers will at tempt to construct the 
derivation tree "bot tom-up";  i.e., from the 
leaves to the root. For historical reasons, 
these parsers are called L R  parsers. The "L"  
stands for "left-to-right scan of the input",  
the " R "  stands for "nghtmost  derivation." 
We shall see that  an LR parser operates by 
reconstructing the reverse of a rightmost 
derivation for the input. In this section we 
shall describe in an informal way how a cer- 
tain class of LR parsers, called LR(1) 
parse-% operate. 

An LR parser deals with a sequence of 
partially built trees during its tree construc- 
tion process. Wc shall loosely call this se- 
quence of trees a forest. In our framework the 
forest is built from left to right as the input 
is read. At a particular stage in the construc- 
tion process, we have read a certain amount 
of the input, and we have a partially con- 
structed derivation tree. For example, sup- 
pose that we are parsing the input string 
'a,b' according to the grammar (ix. After 
reading the first 'a '  we construct the tree: 

Q 
Then we construct: 

~LEMENT~ 
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using the production, -. 

E L E M E N T  -~ 'a' 

To reflect this parsing action, we say that  'a '  
is reduced to E L E M E N T .  Next we use the 
production 

LIST --~ E L E M E N T  

to obtain the tree: 

I 
(ELE MENT~ 

Here, E L E M E N T  is reduced to LIST. We 
then read the next input symbol ',', and 
add it to the forest as a one node tree. 

LIST ) 
I, 

(ELEMENT~ 
© 

We now have two trees. These trees will 
eventually become sub-trees in the final 
derivation tree. We then read the next input 
symbol 'b' and create a single node tree for 
it as well' 

LIST ) 
I 

~LEMENT~ 
© Q 

Using the production, 

E L E M E N T  --~ 'b' 
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we reduce 'b' to E L E M E N T  to obtain: 

LIST ) 
I 

~LEMENT~ ~ELEMENT~ 

Finally, using the production 

LIST --~ LIST ',' E L E M E N T  

we combine these three trees into the final 
tree: 

( 

I 

<b 

L IST 

() 

) 
\ 

At this point the parser detects that  we have 
read all of the input and announces that  the 
parsing is complete. The rightmost deriva- 
tion of 'a,b' in G1 is 

LIST ~ LIST ',' E L E M E N T  
LIST ',b' 
E L E M E N T  ',b' 
'a,b' 

In parsing 'a,b' in the above manner, all we 
have done is reconstruct this rightmost 
derivation in reverse. The sequence of pro- 
ductions encountered in going through a 
rightmost derivation in reverse is called a 
right parse. 

There are four types of parsing actions 
that  an LR parser can make; shift, reduce, 
accept (announce completion of parsing), or 
announce error. 

In a shift action, the next input symbol is 
removed from the input. A new node labeled 
by this symbol is added to the forest at the 
right as a new tree by itself. 

In a reduce action, a production, such as 

A ---~X1X2 . . .  X= 

is specified; each X~ represents a terminal or 
nonterminal symbol. A reduction by this 
production causes the following operations: 

(1) A new node labeled A is created. 
(2) The rightmost n roots in the forest 

(which will have already been labeled 
X1, X2, - . . ,  X,)  are made direct 
descendants of the new node, which 
then becomes the rightmost root of the 
forest. 

If the reduction is by  ~ production of the 
form 

A __+ ,, 

(i.e., where the right side is the empty 
string), then the parser merely creates a root 
labeled A with no descendants. 

A parser operates by repeatedly making 
parsing actions until either an accept or error 
action occurs. 

The reader should verify tha t  the follow- 
ing sequence of parsing actions builds the 
parse tree for 'a,b' in GI: 

(1) Shift 'a' 
(2) Reduce by: E L E M E N T  -+ 'a' 
(3) Reduce by: LIST --+ E L E M E N T  
(4) Shift ',' 
(5) Shift 'b' 
(6) Reduce by.  E L E M E N T  -+ 'b' 
(7) Reduce by: L I S T - - ~  L IS T  ', ' 

E L E M E N T  
(8) Accept 

We now consider the question of how an LR 
parser decides what parsing actions to make. 
Clearly ~ parsing action can depend on what 
actions have already been made and on what 
the next input symbols are. An LR parser 
that  looks at only the next input symbol to 
decide which parsing action to make is 
called an LR(1) parser. If it looks at the 
next k input symbols, k >/ 0, it is called an 
LR(k) parser. To help to make its parsing 
decisions, an LR parser attaches to the root 
of each tree in the forest a number called a 
state. The number on the root of the right- 
most tree is called the current state. In addi- 
tion, there is an re ,hal  state to the left of the 
forest, which helps determine the very first 
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parsing action. We shall write the states in 
parentheses above the associated roots. For 
example, 

(0) 

(I) 
(UST) 

I @LEMENT~ 
(5) 

© 
represents a forest with states. State 5 is the 
current state, and state 0 is the initial state. 
The current s tate and the next input symbol 
determine the parsing action of an LR(1) 
parser. 

The following table shows the states of an 
LR(1) parser for G1, and the associated pars- 
ing actions. In  this table there is a column 
labeled '$'  with special significance. The '$'  
stands for the right endmarker, which is 
assumed to be appended to the end of all 
input strings. Another way of looking at this 
is to think of '$ '  as representing the condi- 
tion where we have read and shifted all of 
the "real"  characters in the input string. 

0 
1 
2 

Current 3 
State 4 

5 
6 

FIG. I .  

N e x t  I n p u t  Symbol  

'a' 'b' ' , '  '$' 

sh i f t  
e r ror  
e r ror  
e r ro r  
e r ror  
sh i f t  
e r ro r  

shift 
error 
error 
error 
er ror  
sh i f t  
e r ror  

e r ro r  
sh i f t  
Red. 2 
Red.  3 
Red.  4 
e r ror  
Red. 1 

e r ror  
accept  
Red 2 
Red. 3 
Red.  4 
e r ro r  
Red 1 

Pa r s ing  Act ion Table  for Gt 

The reduce actions are represented as 
"Red.  n" in the above table; the integer n 
refers to the productions as follows: 

(1) L I S T  -~ L IST  ' , '  E L E M E N T  
(2) L I S T  --+ E L E M E N T  
(3) E L E M E N T  --+ ' a '  
(4) E L E M E N T  --~ 'b' 

We shall refer to the entry for row s and 
column c as pa(s,c). After making either a 
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shift move or a reduce move, the parser 
must determine what state to a t tach  to the 
root of the tree tha t  has just  been added to 
the forest. In  a shift move, this s tate is de- 
termined by the current s tate and the input 
symbol tha t  was just shifted into the forest. 

For example, if we have just  shifted ' , '  
into the forest 

(1) 

Io, © 

then state 1 and ' , '  determine the state to be 
at tached to the new rightmost root ', ' . 

In  a reduce move, suppose we reduce by  
production 

A --* X1X2 . . .  X ,  

When we make nodes X1, . - . ,  X,, direct 
descendants of the root A, we remove the 
states tha t  were at tached to X1, . . .  , Xn. 
The state tha t  is to be at tached to node A 
is determined by  the state tha t  is now the 
rightmost state in the forest, and the non- 
terminal A. For example, if we have just  
reduced by  the production 

L IST  -~ LIST ' , '  E L E M E N T  

and created the forest 

(0) 

( 
C ",st ?" 
 LE EN,) 

G 

LIST ) 

I 
© G 

then state 0 and the nonterminal  L IST  de- 
termine the state to be at tached to the root 
LIST.  Note  tha t  the states previously at- 
tached to the direct descendants of the new 
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root have disappeared, and play no role in 
the calculation of the new state. 

The following table determines these new 
states for G1. For reasons that  will become 
apparent later, we shall call this table the 
goto table for G1. 

RIGHTMOST 
STATE 

FIG 2. 

LABEL OF NEW ROOT 

LIST ELEMENT 'o' 'b'  ' , '  

1 2 3 4 

5 

6 3 4 

BOTO TABLE FOR G.I 

Goto Table for G1 

We shall refer to the entry in the row for 
state s and column c as goto(s,  c). I t  turns 
out tha t  the entries in the goto table which 
are blank will never be consulted [Aho and 
Ullman (1972b)]. 

An LR parser for a grammar is completely 
specified when we have given the parsing 
action table and the goto table. We can 
picture an LR(1) parser as shown in Fig. 3. 

,NPUT I ° 1 '  Ib l * l  
4 INPUT CURSOR 

/ '~OREST CONSISTING ~ ' ~  
( OF PARTIALLY CON-- ~ LR(I) I 
\ STRUCTEDDERIVATION ] I PARSING I 
\ TREE WITH STATES / I ALGORITHM I 

ATTACHED ~ ~  

FIo. 3. Plctomal Representatmn of an LR(1) 
Parser 

The LR(1) parsing algorithm can be sum- 
marized as follows: 

Initmlize: Place the initial state into an 
otherwise empty forest; the initial state is 
the current state at the beginning of the 
parse. 

Parsing Action: Examine the parsing ac- 
tion table, and determine the entry cor- 

responding to the current state and the 
current input symbol. On the basis of this 
entry (Sh~ft, Reduce, Error, or Accept) do 
one of the following four actions: 

Shift: Add a new node, labeled with the 
current input symbol, to the forest. Associ- 
ate the state 

goto(current  state, input) 

to this node and make this state the new cur- 
rent state. Advance the input cursor to 
read the next character. Repeat  the step 
labeled Parsing Action. 

Reduce: If the indicated production is 

A --~XIX2 "'" Xn 

add a new node labeled A to the forest, and 
make the rightmost n roots, n /> 0, direct 
descendants of this new node. Remove the 
states associated with these roots. If s is the 
state which is now rightmost in the forest 
(on the root immediately to the left of the 
new node), then associate the state 

goto(s ,A) 

with the new node. Make this state the new 
current state. (Notice that  the input charac- 
ter is not changed.) Repeat  the step labeled 
Parsing Action. 

Accept: Halt. A complete derivation tree 
has been constructed. 

Error: Some error has occurred in the 
input string. Announce error, and then t ry  
to resume parsing by recovering from the 
error. (This topic is discussed in Section 9.) 

To see how an LR parser works, let us 
again parse the input string 'a,b' using the 
parsing action function pa  (Figure 1) and 
the go to  function (Figure 2). 

Initial,zatwn: We place state 0 into the 
forest; 0 becomes the current state. 

Parsing Actwn 1: pa(0, 'a') = shift. We 
create a new root labeled 'a' and at tach state 
3 to it (because goto(0,  'a') = 3). We have: 

(3) 
(0) Q 
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Parsing Actwn 2: pa(3, ', ') = reduce 3. 
We reduce by production (3) 

E L E M E N T  --* 'a '  

We examine the state immediately to the 
left; this is state 0. Since goto(0,  ELE-  
M E N T )  = 2, we label the new root with 2. 
We now have: 

(2) 
~..ELEMEN 9 

(0) 

Parsing Action 3: pa(2, ',') = reduce 2. 
We reduce by  production (2) 

L IST  -~ E L E M E N T  

goto(0,  LIST)  = 1, so the new state is 1. 
Parsing Action 4: pa(1, ' , ') = shift. We 

shift and at tach state 5. 
Parsing Action 5: pa(5, 'b') = shift. We 

shift and at tach state 4. We now have 

(o) 

(1) 

LIST ) 
I 

® (5) (4) 
© @  

Parszng Action 6: pa(4, '$') = reduce 4. 
We reduce by  production (4) 

E L E M E N T  -~ 'b' 

goto(5,  E L E M E N T )  = 6, so the new state 
is 6. We now have 

(01 

(t) 

(LIST) 
I (ELEMEN 9 (6) 

(5) (ELEMENT) 
© @ 
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Parsing Action 7: pa(6, '$') = reduce 1. 
We reduce by production (1) 

L IST  --~ L I S T  ' , '  E L E M E N T  

The state to the left of the newly created 
tree is state 0, so the new state is goto(0,  
LIST)  = 1. 

Parsing Action 8: pa(1, '$') = accept. We 
halt  and terminate the parse. 

The reader is urged to follow this pro- 
cedure with another string, such as 'a,b,a' to 
verify his understanding of this process. I t  is 
also suggested tha t  he t ry  a string which is 
not in L(G1), such as 'a,ba' or 'a,,b', to see 
how the error detection mechanism works. 
Note tha t  the g rammar  symbols on the roots 
of the forest, concatenated from left to right, 
always form a viable prefix. 

Properly constructed LR(1) parsers can 
parse a large class of useful languages called 
the deterministic context-free languages. These 
parsers have a number  of notable properties: 

(1) They report  error as soon as possible 
(scanning the input from left to right). 

(2) They parse a string in a t ime which is 
proportional to the length of the 
string. 

(3) They  require no rescanning of previ- 
ously scanned input (backtracking).  

(4) The parsers can be generated mechan- 
ically for a wide class of grammars,  
including all grammars  which can be 
parsed by  recursive descent with no 
backtracking [Knuth (1971)] and 
those grammars  parsable by  operator 
precedence techniques [Floyd (1963)]. 

The reader may have noticed tha t  the 
states can be stored on a pushdown stack, 
since only the rightmost state is ever used 
at  any stage in the parsing process. In a 
shift move, we stack the new state. In  a 
reduce move, we replace a string of states on 
top of.the stack by  the new state. 

For example, in parsing the input string 
'a,b' the stack would appear as follows at  
each of the actions referred to above. (The 
top of the stack is on the right.) 

A ctwn Stack Input 

In i t ia l  0 'a ,b$'  
1 0 3 ',b$' 
2 0 2 ',b$' 
3 0 1 ',b$' 
4 0 1 5 'b$' 
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Actwn Stack Input 

5 0 1 5 4 '$' 
6 0 1 5 6 '$' 
7 0 1 '$' 
8 0 1 '$' 

Thus, the parser control is independent of 
the trees, and depends only on a stack of 
states. In  practice, we may  not need to con- 
struct  the derivation tree explicitly, if the 
translation being performed is sufficiently 
simple. For example, in Section 10, we men- 
tion a class of useful translations tha t  can 
be performed by an LR parser without re- 
quiring the forest to be m a i n t a i n e d .  

If  we wish to build the derivation tree, we 
can easily do so by stacking, along with each 
state, the root of the tree associated with tha t  
state. 

5. REPRESENTING THE PARSING ACTION AND 
GOTO TABLES 

Storing the full action and goto tables 
straightforwardly as matrices is extremely 
wasteful of space for large parsers. For ex- 
ample, the goto table is typically nearly all 
blank. In  this section we discuss some simple 
ways of compacting these tables which lead 
to substantial  savings of space; in effect, we 
are merely representing a sparse matrix more 
compactly,  using a particular encoding. 

Let  us begin with the shift actions. I f  x is 
a terminal symbol and s is a state, the parsing 
action on x in state s is shift if and only if 
goto(s ,  x) is nonblank. We will encode the 
goto into the shift action, using the notat ion 

s h i f t  17 

as a shorthand for "shift  and a t tach state 17 
to the new node." By  encoding the gotos on 
terminal symbols as part  of the action table, 
we need only consider the gotos on non- 
terminal symbols. We will encode them by 
columns; i.e., by  nonterminal symbol name. 
If, on a nonterminal symbol A, there are 
nonblank entries in the goto table corre- 
sponding to states s~, s2, • • • , sn, and we have 

s, '  = goto(s , ,  A), for i = 1, . - .  , n  
then we shall encode the column for A in a 
pseudo-programming language: 

A: i f  (state = sl) goto = sl '  

i f  (state = s n ) g o t o  = s~' 

The goto table of G1 would be represented in 
this format  as: 

LIST:  i f  (state = 0) g o t o  = 1 
E L E M E N T :  i f  (state = 0 ) g o t o  = 2 

i f  (state = 5 ) g o t o  = 6 

I t  turns out tha t  [Aho and Ullman (1972b)] 
whenever we do a goto on A, the state will 
always be one of sl, • • • , sn, even if the input 
string is in error. Thus, one of these branches 
will always be taken. We shall return to this 
point later in this section. 

We shall encode parsing actions in the 
same spirit, but by rows of the table. The 
parsing actions for a state s will also be 
represented by  a sequence of pseudo-pro- 
gramming language statements.  I f  the input  
symbols al, . . . ,  a= have the associated 
actions actionl, . . .  , actionn, then we will 
write: 

s: i f  (input = al) a c t i o n 1  

i f  (input = an) ac t ionn  

As we mentioned earlier, we shall a t tach 
goto(s,a,)  onto the action if action~ is shift. 
Similarly, if we have a reduction by  the 
production A --* a, we will usually write 

r e d u c e  b y  A --~ a 

as the action. 
For example, the parsing actions for state 

1 in the parser for G~ are represented by: 

1: i f  (input = 'a') e r r o r  
i f  (input = 'b') e r r o r  
i f  (input = ' , ') s h i f t  5 
i f  (input = '$') a c c e p t  

At first glance this is no saving over the 
table, since the parsing action table is 
usually nearly full. We may  make a large 
saving, however, by introducing the notion 
of a default  action in the statements.  A 
default action is simply a parsing action 
which is done irrespective of the input char- 
acter; there may  be at most one of these in 
each state, and it will be writ ten last. Thus, 
in state 1 we have two error actions, a shift 

Comput ing  Surveys,  Vol 6, No 2, June 1974 



action, and an accept action, we shall make 
the error action the default. We will write: 

1: i f  (input = ' , ') s h i f t  5 
i f  (input = $)  a c c e p t  
e r r o r  

There is an additional saving which is 
possible. Suppose a state has both error and 
reduce entries. Then we may replace all 
error entries in that  state by  one of the re- 
duce entries. The resulting parser may  make 
a sequence of reductions where the original 
parser announced error but  the new parser 
will announce error before shifting the next 
input symbol. Thus both parsers announce 
error at the same position in the input, but  
the new parser may take slightly longer be- 
fore doing so. 

There is a benefit to be had from this modi- 
fication; the new parsing action table will re- 
quire less space than the original. For 
example, s tate 2 of the parsing action table 
for G1 would originally be represented by:  

2: i f  (input = 'a') e r r o r  

i f  (input = 'b') e r r o r  

i f  (input = ' , ') r e d u c e  2 
i f  (input = '$') r e d u c e  2 

Applying this transformation, state 2 would 
be simply represented as: 

2: r e d u c e  2 

Thus in a state with reduce actions, we 
will always have the shift and accept actions 
precede the reduce actions. One of the reduce 
actions will become a default action, and we 
will ignore the error entries. In a state with- 
out reduce actions, the default action will be 
error. We shall discuss other means of cut- 
ting down on the size of a parser in Section 8. 

6. CONSTRUCTION OF A PARSER FROM A 
GRAMMAR 

How do we construct the parsing action and 
goto tables of an LR(1) parser for a given 
grammar?  In  this section we outline a 
method that  works for a large class of 
grammars  called the lookahead LR(1) 
(LALR(1)) grammars.  

The  behavior of an LR parser, as described 
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in the last section, is dictated by  the current 
state. This state reflects the progress of the 
parse, i.e., it summarizes information about 
the input string read to this point so tha t  
parsing decisions can be made. 

Another way to view a state is to consider 
the state as a representative of an equiva- 
lence class of viable prefixes. At every stage 
of the parsing process, the string formed by 
concatenating the grammar  symbols on the 
roots of the existing subtrees must  be a vi- 
able prefix; the current s tate is the repre- 
sentative of the class containing tha t  viable 
prefix. 

6.1 Sets of Items 
In  the same way tha t  we needed to discuss 

partially built trees when talking about  pars- 
ing, we will need to talk about  "part ial ly 
recognized productions" when we talk about  
building parsers. We introduce the notion of 
item* to deal with this concept. An i tem is 
simply a production with a dot ( .)  placed 
somewhere in the right-hand side (possibly 
at  either end). For example, 

[LIST ~ L IST  • ',' E L E M E N T ]  
[ E L E M E N T  -~ . 'a'] 

are both items of G1. 
We enclose items in square brackets to 

distinguish them more clearly from produc- 
tions. 

Intuit ively,  a set of items can be used to 
represent a stage in the parsing process; for 
example, the item 

[A --~ a . f~] 

indicates that  an input string derivable from 
a has just been seen, and, if we next see an 
input string derivable from f3, we may  be 
able to reduce by  the production A --* aft. 

Suppose the portion of the input tha t  we 
have seen to this point has been reduced to 
the viable prefix "ya. Then the i tem [A --* 
a .  ~] is said to be valid for ~a if ~A is also a 
viable prefix. In  general, more than one i tem 
is valid for a given viable prefix; the set of 
all items which are valid at a particular 

* Some a u t h o r s  have  used the  t e r m  "conf igura-  
t i o n "  for i tem. 

Computing Surveys, Vol 6, No 2, June 1974 



110 • A.  V. Aho and S. C. Johnson 

stage of the parse corresponds to the current 
s tate of the parser. 

As an example, let us examine the viable 
prefix 

L IST  ' , '  

in G1. The i tem 

[LIST --~ L IST  ' , '  . E L E M E N T ]  

is valid for this prefix, since, setting ~, to the 
empty  string and a to L IST  ' , '  m the defini- 
tion above, we see that  ~ L IST  (which is 
lust  LIST)  is a viable prefix. In  other words, 
when this i tem is valid, we have seen a por- 
tion of the input tha t  can be reduced to the 
viable prefix, and we expect to see next a 
portion of the input tha t  can be reduced to 
E L E M E N T .  

The i tem 

[LIST --* . E L E M E N T ]  

is not valid for L I S T  ' , '  however, since 
setting ~/ to L I S T  ' , '  and a to the empty  
string we obtain 

L IST  ' , '  L IST 

which is not a viable prefix. 
The reader can (and should) verify tha t  

the state corresponding to the viable prefix 
L IST  ' , '  is associated with the set of items: 

[LIST -~ L IST  ' , '  . E L E M E N T ]  
[ E L E M E N T  --* . 'a'] 
[ E L E M E N T  -~ . 'b'] 

I f  ~, is a viable prefix, we shall use V('~) to 
denote the set of items that are valid for % I f  
~/is not a viable prefix, V(~,) will be empty.  
We shall associate a state of the parser with 
each set of valid items and construct the 
entries in the parsing action for tha t  s tate 
from the set of items. There is a finite num- 
ber of productions, thus only a finite number  
of items, and thus a finite number  of possi- 
ble states associated with every g rammar  G. 

6.2 Constructing the Collection of Accessible 
Sets of Items 
We shall now describe a constructive pro- 

cedure for generating all of the states and, 
at  the same time, generating the parsing 
action and goto table. As a rumfing ex- 

ample, we shall construct parsing action and 
goto tables for G1. 

First, we augment  the g rammar  with the 
production 

A C C E P T  --~ L I S T  

where in general L IST  would be the s tar t  
symbol of the g rammar  (here G1). A reduc- 
tion by this production corresponds to the 
accept action by  the parser. 

Next  we construct I0 = V("),  the set of 
items valid for the viable prefix consisting 
of the empty  string. By definition, for G1 this 
set must  contain the item 

[ACCEPT --~ . LIST] 

The dot in front of the nonterminal L IST  
means that,  at  this point, we can expect to 
find as the remaining input any sentence 
derivable from LIST.  Thus, I0 must  also 
contain the two items 

[LIST --~ . L I S T  ' , '  E L E M E N T ]  
[LIST --~ . E L E M E N T ]  

obtained from the two productions for the 
nonterminal LIST.  The second of the items 
has a dot in front of the nonterminal  ELE-  
M E N T ,  so we should also add to the initial 
s tate the items 

[ E L E M E N T  --~ . 'a'] 
[ E L E M E N T  -~ . 'b'] 

corresponding to the two productions for 
element. These five items constitute I0. 
We shall associate s tate  0 with I0. 

Now suppose tha t  we have computed 
V(~), the set of items which are valid for 
some viable prefix % Let  X be a terminal  or 
nonterminal symbol. We compute V(~X)  
from V('y) as follows: 

(1) For each i tem of the form [A --* 
a .  X~] in V('y), we add to V('yX) 
the i tem [A ~ a X  . ~]. 

(2) We compute the closure of the set of 
items in V(~,X); tha t  is, for each i tem 
of the form [B --~ a .  C~] in V(~,X), 
where C is a nonterminal symbol, we 
add to V(~X)  the items 

[C ~ . ~1] 

[C  ~ . an]  
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where C -~ ax, . . .  , C -~ an are all 
the productions ill G with C on the 
left side. If  one of these items is al- 
ready in V('IX)  we do not duplicate 
this item. We continue to apply this 
process until no new items can be 
added to V('rX).  

I t  can be shown that  steps (1) and (2) 
compute exactly the items tha t  are valid for 
~,X [Aho and Ullman (1972a)]. 

For cxample, let us compute 11 = 
V(LIST),  the set of items tha t  are valid for 
the viable prefix LIST.  We apply the above 
construction with ~, = " and X = LIST,  and 
use the fivc items in I0. 

In  step (1) of the above construction, we 
add the items 

[ACCEPT -~ L IST  .] 

[LIST --~ L I S T  . ' , '  E L E M E N T ]  

to 11. Since no i tem in 11 has a nonterminal 
symbol immediately to the right of the dot, 
the closure operation adds no new items to 
11. The reader should verify tha t  these two 
items are the only items valid for the viable 
prefix. We shall associate state 1 with 11. 

Notice that  the above construction is com- 
pletely independent of ~/; it needs only the 
items in V(~), and X. For every set of items 
I and every g rammar  symbol X the above 
construction builds a new set of items which 
we shall call GOTO(I ,  X);  this is essentially 
the same goto function encountered in the 
last two sections. Thus, in our example, we 
have computed 

GOTO(I0, LIST)  = 11 

We can extend this GOTO function to 
strings of g rammar  symbols as follows: 

GOTO(I ,  ") = I 

GOTO(I ,  -rX) = GOTO(GOTO(I ,  ~), X) 

where "r is a string of g rammar  symbols and 
X is a nontermmal  or terminal symbol. If  
I = V(a), then I = GOTO(Io, a). Thus 
GOTO(I0,  a) ~ ~b if and only if a is a viable 
prefix, where I0 = V("). 

The sets of items which can be obtained 
from Io by GOTO's  are called the accesszble 
sets of ~tems. We build up the set of accessi- 
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ble sets of items by computing GOTO(I ,  X) ,  
for all accessible sets of items I and gram- 
mar  symbols X,  whenever the GOTO con- 
struction comes up with a new nonempty  set 
of items, this set of items is added to the set 
of accessible sets of items and the process 
continues. Since the number  of sets of items 
is finite, the process eventually terminates.  

The order in which the sets of items are 
computed does not matter ,  nor does the 
name given to each set of items. We will 
name the sets of items I0, 11, 12, . . .  in the 
order in which we create them. We shall 
then associate state i with I , .  

Let  us return to G1. We have computed 
I0, which contained the items 

[ACCEPT --~.  LIST] 
[LIST -~ . L I S T  ' , '  E L E M E N T ]  
[LIST --~ . E L E M E N T ]  
[ E L E M E N T  --* . 'a'] 
[ E L E M E N T  --* .  'b'] 

We now wish to compute GOTO(Io,  X) for 
all g rammar  symbols X. We have already 
computed 

GOTO(Io, LIST)  = I1 

To determine GOTO(I0, E L E M E N T ) ,  we 
look for all items in I0 with a dot immedi- 
ately before E L E M E N T .  We then take 
these items and move the dot to the right of 
E L E M E N T .  We obtain the single i tem 

[LIST --* E L E M E N T  .] 

The closure operation yields no new items 
since this i tem has no nonterminal to the 
right of the dot. We call the set with this 
i tem I2. Continuing in this fashion we find 
that :  

GOTO(I0, 'a ' )  contains only 
[ E L E M E N T  --~ 'a' .] 

GOTO(I0, 'b') contains only 
[ E L E M E N T  --~ 'b' .] 

and GOTO(I0, ', ') and GOTO(I0, 'S') are 
empty.  Let  us call the two nonempty  sets 
I3 and I4. We have now computed all sets of 
items tha t  are directly accessible from I0. 

We now compute all sets of items tha t  are 
accessible from the sets of items just com- 
puted. We continue computing accessible 
sets of items until no more new sets of items 
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are found. The following table shows the 
collection of accessible sets of items for G~: 

Io: ]ACCEPT --~ . LIST] 
[LIST --*.  LIST ', '  E L E M E N T ]  
[LIST --~ . E L E M E N T ]  
[ E L E M E N T  --~ . 'a'] 
[ E L E M E N T  --~ . 'b'] 

Ix: [ACCEPT --~ LIST . ] 
[LIST --~ L I S T .  ' , '  E L E M E N T ]  

12: [LIST --~ E L E M E N T  .] 

13 : [ E L E M E N T  -~ 'a '  .1 

I4: [ E L E M E N T  --* 'b' .] 

15: [LIST --~ LIST ' , '  . E L E M E N T ]  
[ E L E M E N T  -~ . 'a'] 
[ E L E M E N T  --* . 'b'] 

I6: [LIST --~ LIST ', '  E L E M E N T  .] 

The GOTO function on this collection can 
be portrayed as a directed graph in which 
the nodes are labeled by the sets of items 
and the edges by grammar symbols, as fol- 
lows: 

ELEMENT ~@ 

k ,Q~ Q 

'b' i 

ELEMENT @ 

Here, we used i in place of I,. 
For example, we observe 

GOTO(0, ") = 0 
GOTO(0, LIST ', ') = 5 
GOTO(0, LIST ', '  E L E M E N T )  = 6 

Observe that  there is a path from vertex 0 
to a given node if and only if that  path spells 
out a viable prefix. Thus, GOTO(0, 'ab')  is 
empty, since 'ab'  is not a viable prefix. 
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6.3 Constructing the Parsing Action and Goto 
Tables from the Collection of Sets of Items 
The parsing action table is constructed 

from the collection of accessible sets of items. 
From the items in each set of items I ,  we 
generate parsing actions. An item of the 
form 

[A --* a . 'a '  El 

in I ,  generates the parsing action 

i f  (input = 'a ' )  sh i f t  t 

where GOTO(I, ,  'a ' )  = I t .  
An item with the dot at the right end of 

the production is called a comple t ed  i t em .  A 
completed item [A -~ a .] indicates tha t  we 
may reduce by production A --~ a. However, 
with an LR(1) parser we must determine 
on what input symbols this reduction is 

' ' ' a  ' possible. If  'a l ' ,  a2 ,  " . ,  ,, are these 
symbols and 'a l ' ,  a2 ,  • • • , an are not asso- 
ciated with shift or accept actions, then we 
would generate the sequence of parsing ac- 
tions: 

if(input = ' a l ' )  r e d u c e  by :  A --+ 
if(input = 'a2') r e d u c e  by :  A --* 

if(input = 'an')  reduce  by:  A --~ 

As we mentioned in the last section, if the 
set of items contains only one completed 
item, we can replace this sequence of parsing 
actions by the default reduce action 

reduce  by:  A ~ 

This parsing action is placed after all shift 
and accept actions generated by this set of 
items. 

If  a set of items contains more than one 
completed item, then we must generate 
conditional reduce actions for all completed 
items except one. In a while we shall ex- 
plain how to compute the set of input sym- 
bols on which a given reduction is permissi- 
ble. 

If a completed item is of the form 

[ACCEPT --~ S .  ] 

then we generate the accept action 

if(input = '$') accept  



where '$' is the right endmarker for the input 
string. 

Finally, if a set of items generates no re- 
duce action, we generate the default error 
statement. This statement is placed after 
all shift and accept actions generated from 
the set of items. 

Returning to our example for G1, from 
I0 we would generate the parsing actions: 

if( input = 'a') sh i f t  3 
if( input = 'b') sh i f t  4 
e r r o r  

Notice that  these are exactly the same pars- 
ing actions as those for state 0 in the parser 
of Section 4. Similarly, I3 generates the ac- 
tion 

reduce by:  E L E M E N T  -~ 'a' 

The goto table is used to compute the new 
state after a reduction. For example, when 
the reduction in state 3 is performed we al- 
ways have state 0 to the left of 'a'. The new 
state is determined by simply noting that  

GOTO(I0, E L E M E N T )  = I2 

This gives rise to the code 

if(state = 0 ) g o t o  = 2 

for E L E M E N T  in the goto table. 
In general, if nonterminal A has precisely 

the following GOTO's in the GOTO graph: 

GOTO(I~,  A) = I ,  
G O T O ( I , ,  A) = It,  

GOTO(I,~, A) = It~ 

then we would generate the following repre- 
sentation for column A of the goto table: 

A: i f(state = s l ) g o t o  = tl 
if(state = s2) go to  = t~ 

if(state = s , , ) g o t o  = t~ 

Thus, the goto table is simply a representa- 
tion of the GOTO function of the last sec- 
tion, applied to the nonterminal symbols. 

We must now determine the input sym- 
bols on which each reduction is applicable. 
This will enable us to detect ambiguities and 
difficult-to-parse constructs in the grammar, 
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and to decide between reductions if more 
than one is possible in a given state. In 
general, this is a complex task; the most 
general solution of this problem was given by 
[Knuth (1965)], but  his algorithm suffers 
from large time and memory requirements. 
Several simplifications have been proposed, 
notably by [DeRemer (1969 and 1971)], 
which lack the full generality of Knuth 's  
technique, but  can construct practical par- 
sers in reasonable time for a large class of 
languages. We shall describe an algorithm 
that  is a simplification of Knuth 's  algorithm 
which resolves all conflicts tha t  can be re- 
solved when the parser has the states as 
given above. 

6.4 Computing Lookahead Sets 
Suppose [A -~ = .  B] is an i tem that  is 

valid for some viable prefix ~a. We say that  
input symbol 'a' is applicable for [A ---* ~ • ~] 
if, for some string of terminals 'w', both 
"y=~'aw' and ~,A'aw' are right sentential 
forms. The right endmarker '$' is applicable 
for [A ---* = .  ~] if both ~,=B and ~A are 
right sentential forms. 

This definition has a simple intuitive ex- 
planation when we consider completed items. 
Suppose input symbol 'a' is applicable for 
completed item [A --* ~ .]. If an LR(1) 
parser makes the reduction specified by this 
item on the applicable input symbol 'a', 
then the parser will be able to make at least 
one more shift move without encountering 
an error. 

The set of symbols that  are applicable for 
each item will be called the lookahead set 
for that  item. From now on we shall in- 
clude the lookahead set as part  of an item. 
The production with the dot somewhere in 
the right side will be called the core of the 
item. For example, 

( [ E L E M E N T  -o 'a' .], {',', '$'}) 

is an item of G1 with core 

[ E L E M E N T  --* 'a' .] 

and lookahead set {',', '$'}. 
We shall now describe an algorithm that  

will compute the sets of valid items for a 
grammar where the items include their 
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lookahead sets. Recall tha t  in the last sec- 
tion items in a set of items arose in two ways: 
by  goto calculations, and then by  the closure 
operation. The first type  of calculation is 
very simple; if we have an i tem of the form 

([A --~ a .  X/3], L) 

where X is a g rammar  symbol and L is a 
lookahead set, then when we perform the 
goto operation on X on this item, we obtain 
the i tem 

([A --* a X  . [3], L)  

(i.e., the lookahead set is unchanged). 
I t  is somewhat  harder to compute the 

lookahead sets in .the closure operation. 
Suppose there is an i tem of the form 

([A --~ a .  BE], L) 

in a set of items, where B is a nonterminal 
symbol. We must add items of the form 

([B - -~ .  ~], L') 

where B --* ~ is some production in the 
grammar.  The new lookahead set L '  will 
contain all terminal symbols which are the 
first symbol of some sentence derivable from 
any string of the form /3 'a ' ,  where 'a '  is a 
symbol in L. 

If, in the course of carrying out this con- 
struction, a set of items is seen to contain 
items with the same core; e.g., 

([A --. a . /3 ] ,  L,) 

and ([A --* a . ~], L2) 

then these items are merged to create a sin- 
gle i tem; e.g., ([A --~ a .  ~], L1 U L2). 

We shall now describe the algorithm for 
constructing the collection of sets of items 
in more detail by  constructing the valid sets 
of items for g rammar  G1. Initially, we con- 
struct  Io by  start ing with the single i tem 

( [ A C C E P T - - * .  LIST], {'$'}) 

We then compute the closure of this set of 
items. The two productions for L I S T  give 
rise to the two items 

([LIST - -* .  L I S T  ' , '  E L E M E N T ] ,  {'$'}) 

and ([LIST ~ .  E L E M E N T ] ,  {'$'1) 

The first of these two items gives rise, 

through the closure operation, to two addi- 
tional items 

([LIST - -* .  L IST  ' , '  E L E M E N T ] ,  { ' , ' I )  

and ([LIST--* . E L E M E N T ] ,  [ ' , '}) 

since the first terminal symbol of any string 
derivable from 

',' E L E M E N T  '$'  

is always ', ' . Since all i tems with the same 
core are merged into a single i tem with the 
same core and the union of the lookahead 
sets, we currently have the following items 
in I0: 

( [ A C C E P T - ~ .  LIST],  {'$'}) 
([LIST --~.  L I S T  ' , '  E L E M E N T ] ,  {',', '$ '}) 
( [ L I S T - - ~ .  E L E M E N T ] ,  {',', '$ ' ] )  

The  first two of these items no longer give 
rise to any new items when the closure 
operation is applied. The third i tem gives 
rise to the two new items: 

( [ E L E M E N T  --~.  'a'], {',', '$'}) 
( [ E L E M E N T  --~.  'b'], {',', '$'}) 

and these five items make up I0. 
We shall now compute 

I2 = GOTO(I0,  'a'). 
First  we add the i tem 

( [ E L E M E N T  --* 'a' .], {',', '$'1) 

to I2, since 'a' appears to the right of the 
dot of onc i tem in I9. The  closure operation 
adds no new items to 12. 

I2 contains a completed item. The look- 
ahead set / ' , ' ,  '$'} tells us on which input 
symbols the reduction is applicable. 

The reader should verify tha t  the com- 
plete collection of sets of items for G1 is: 

10: ]ACCEPT --* . LIST[, {'$'} 
[LIST --. .  LIST ', ' ELEMENT], [',', '$'J 
[LIST--* ELEMENT], {',', '$'] 
[ELEMENT -~ . 'a'], {',', '$'} 
[ELEMENT --* 'b'], [', ', '$'} 

I~' [ACCEPT ~ LIST ], {'$'} 
[LIST ~ LIST . ', '  ELEMENT], I ' , ' ,  '$'} 

I~: [LIST -~ ELEMENT .], {',', '$'} 

Is: [ELEMENT -o 'a' .], {',', '$'} 
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I4: [ E L E M E N T  ~ 'b' .], { ' , ' ,  '$ '} 

15: [LIST --~ LIST ',' . ELEMENT], {',', '$'} 
[ELEMENT ~ 'a'], ', ', '$'} 
[ELEMENT ~ .  'b'], ',', '$'} 

16" [LIST ~ LIST ', ' ELEMENT .], ',', '$'} 

Although the situation does not occur 
here, if we generate a set of items I t  such tha t  
I t  has the same set of cores as some other 
set of items I ,  already generated, but  I ,  
It, then we combine I8 and I t  into a new set 
of items I by merging the lookahead sets of 
items with the same cores. We must  then 
compute GOTO(I ,  X) for all g rammar  sym- 
bols X. 

The lookahead sets on the completed 
items give the terminal symbols for which 
the reductions should be performed. There 
is a possibility tha t  there are ambiguities in 
the grammar,  or the g rammar  is too complex 
to allow a parser to be constructed by  this 
technique; this causes conflicts to be dis- 
covered in the actions of the parser. For ex- 
ample, suppose there is a set of items I~ in 
which 'a' gives rise to the parsing action 
shift because GOTO(Is,  'a') exists. Suppose 
also that  there is a completed i tem 

([A --. a .], L) 

in I, ,  and tha t  the terminal symbol 'a '  is in 
the lookahead set L. Then we have no way 
of knowing which action is correct in state s 
when we see an 'a ' ;  we may shift 'a ' ,  or we 
may reduce by A --~ a. Our only recourse is 
to report  a shift-reduce conflict. 

In  the same way, if there are two reduc- 
tions possible in a state because two com- 
pleted items contain the same terminal sym- 
bol in their lookahead sets, then we cannot 
tell which reduction we should do; we must  
report  a reduce-reduce conflict. 

Instead of reporting a conflict we may  
a t t empt  to proceed by  carrying out all con- 
flicting parsing actions, either by  parallel 
simulation [Earley (1970)] or by  backtrack-  
ing [Pager (1972b)]. 

A set of items is consistent or adequate if it 
does not generate any shift-reduce or reduce- 
reduce conflicts. A collection of sets of items 
is vahd if all its sets of items are consistent; 
our collection of sets of items for G1 is valid. 

We summarize the parsing action and goto 

LR Parsing • 115 

table construction process: 
(1) Given a g rammar  G, augment  the 

g rammar  with a new initial produc- 
tion 

A C C E P T  ~ S 

where S is the s tar t  symbol of G. 
(2) Let I be the set with the one i tem 

([ACCEPT --~.  S], {'$'}) 

(3) 

(4) 

Let I0 be the closure of I.  
Let  C, the current collection of ac- 
cessible sets of items, initially contain 
only I0. 
For each I in C, and for each g rammar  
symbol X, compute I '  = GOTO(I ,X) .  
Three cases can occur: 
a. I '  = I "  for some I "  already in C. 

In  this case, do nothing. 
b. I f  the set of cores of I '  is distinct 

from the set of cores of a set of 
items already in C, then add I '  to C. 

c. I f  the set of cores of I ~ is the same 
as the set of cores of some I "  al- 
ready in A but  I '  ~ I " ,  then let 
I "  be the set of items 

([A -~ a . /~ ] ,  L1 (J L2) 

such tha t  

([A --* a . f~], 51) is in I '  and 
([A --~ a .  ~], L~) is in I " .  

Replace I"  by I "  in C. 
(5) Repeat  step 4 until no new sets of 

items can be added to C. C is called 
the LALR(1)  collection of sets of items 
for G. 

(6) From C t ry  to construct the parsing 
action and goto tables as in Section 
6.3. 

I f  this technique succeeds in producing a 
collection of sets of items for a given gram- 
mar  in which all sets of items are consistent, 
then tha t  g rammar  is said to be an LALR(1)  
grammar. LALR(1) grammars  include many  
important  classes of grammars,  including 
the LL(1) grammars  [Lewis and Stearns 
(1968)], the simple mixed s t rategy prece- 
dence grammars  [McKeeman, Horning, and 
Wor tman  (1970)], and those parsable by 
operator precedence techniques. Techniques 
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for proving these inclusions can be found in 
[Aho and Ullman (1972a and 1973a)]. 

Step (4) can be rather time-consuming to 
implement. A simpler, but  less general, 
approach would be to proceed as follows. Let  
FOLLOW(A) be the set of terminal symbols 
that  can follow nonterminal symbol A in a 
sentential form. If A can be the rightmost 
symbol of a sentential form, then '$' is in- 
cluded in FOLLOW(A).  We can compute the 
sets of items without lookaheads as in Section 
6.2. Then in each completed item [A --~ a .] 
we can approximate the lookahead set L for 
this item by FOLLOW(A) (In general, L is 
a subset of FOLLOW(A).)  The resulting 
collection of sets of items is called the 
SLR(1) collection. If  all sets of items in the 
SLR(1) collection are consistent, then the 
grammar is said to be simple LR(1) [De- 
Remer (1971)]. Although not every LALR(1) 
grammar is simple LR(1), every language 
generated by an LALR(1) grammar is also 
generated by a simple LR(1) grammar 
([Aho and Ullman (1973a)] contains more 
details). 

7. PARSING AMBIGUOUS GRAMMARS 

I t  is undesirable to have undetected ambigui- 
ties in the definition of a programming 
language. However, an ambiguous grammar 
can often be used to specify certain language 
constructs more easily than an equivalent 
unambiguous grammar. We shall also see 
that  we can construct more efficient parsers 
directly from certain ambiguous grammars 
than from equivalent unambiguous gram- 
mars. 

If we a t tempt  to construct a parser for 
an ambiguous grammar, the LALR(1) 
parser construction technique will generate 
at least one inconsistent set of items. Thus, 
the parser generation technique can be used 
to determine that  a grammar is unambigu- 
ous. Tha t  is to say, if no inconsistent sets of 
items are generated, the grammar is guaran- 
teed to be unambiguous. However, if an 
inconsistent set of items is produced, then 
all we can conclude is that  the grammar is 
not LALR(1). The grammar may or may 
not be ambiguous. (There is no general 

algorithm to determine if a context-free 
grammar is ambiguous (see, for example 
[Aho and Ullman (1972a)]). 

Inconsistent sets of items are useful in 
pinpointing difficult-to-parse or ambiguous 
constructions in a given grammar. For 
example, a production of the form 

A --~ A A  

in any grammar will make that  grammar 
ambiguous and cause a parsing action con- 
flict to arise from sets of items containing 
the items with the cores 

[A --~ A A .] 
[A --~ A . A] 

Constructions which are sufficiently com- 
plex to require more than one symbol of 
lookahead also result in parsing action con- 
flicts. For example, the grammar 

S --~ A 'a' 
A --) 'a' I "  

is an LALR(2) but  not LALR(1) grammar. 
Experience with an LALR(1) parser 

generator called YACC at Bell Laboratories 
has shown that  a few iterations with the 
parser generator are usually sufficient to re- 
solve the conflicts in an LALR(1) collec- 
tion of sets of items for a reasonable pro- 
gramming language. 

Example 7.1: Consider the following pro- 
ductions for " i f- then" and "if-then-else" 
statements: 

S --~ 'if b then'  S 
S -~ 'if b then'  S 'else' S 

If these two productions appear in a gram- 
mar, then that  grammar will be ambiguous; 
the string 

'if b then if b then'  S 'else' S 

can be parsed in two ways as shown: 
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In  most programming languages, the first 
phrasing is preferred. Tha t  is, each new 
'else' is to be associated with the closest 
"unelsed" ' then' .  

A g rammar  using these ambiguous produc- 
tions to specify if-then-else s tatements  will 
be smaller and, we feel, easier to compre- 
hend than  an equivalent unambiguous 
grammar.  In  addition if a g rammar  has only 
ambiguities of this type, then we can con- 
struct  a "Mid LALR(1) parser for the gram- 
mar  merely by  resolving each shift-reduce 
conflict in favor of shift [Aho, Johnson, and 
Ullman (1973)]. 

Example  7.2: Consider the ambiguous 
grammar*  

S ~ 'if b then '  S 
S -~ 'if b then '  S 'else' S 
S --~ 'a' 

in which each else is to be associated with 
the last unelsed ' then' .  The LALR(1) col- 
lection of sets of items for this g rammar  is as 
follows: 

/0: [ACCEPT --, • S], {'$'} 
[3 --* . 'if b then' 3], {'3'} 
[3 ~ . 'if b then' S 'else' 3], {'$'} 
[3 --* 'a'], {'$'} 

I1 [ A C C E P T  --, S .1, {'S'} 

I~: IS ~ 'if b t h e n '  . 3[,  { 'e lse ' ,  '$'1 
[3 ~ 'if b t h e n '  S 'e lse '  S], [ ' e l se ' ,  '$'} 
IS ~ 'if b t h e n '  S], [ ' e l se ' ,  '$'} 
IS ~ . ' if  b t h e n '  S 'e lse '  S], [ ' e l se ' ,  '$'} 
[3 ~ . 'a '] ,  [ ' e l se ' ,  '$'} 

In:  [S ~ 'a '  ], { 'else ' ,  '$ '}  

14: [S --* 'if b t h e n '  S .1, [ ' e l se ' ,  '$'} 
IS ~ ' if  b t h e n '  S . ' e lse '  S], { 'else ' ,  '$'} 

* The  fol lowing g r a m m a r  is an equ iva l en t  u n a m -  
b iguous  g r a m m a r :  

S --* ' if  b t h e n '  S 
S --* 'If b t h e n '  S~ 'e lse '  S 
S --* ' a '  
$I --* ' if  b t h e n '  $1 'e lse '  Sx 
SI --* 'a' 
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15: [S ~ 'if b t h e n '  S 'e lse '  S], [ ' e l se ' ,  '$ '}  
IS ~ . 'if b t h e n '  S], { 'else ' ,  '$'} 
[3 ~ . ' if  b t h e n '  S 'e lse '  3],  [ ' e l se ' ,  '$'} 
[3 ~ . 'a '] ,  {'else ' ,  '$'} 

I s '  [3 ~ ' if  b t h e n '  S 'e lse '  S .], { 'else ' ,  '$'} 

I4 contains a shift-reduce conflict. On the 
input 'else', I4 says tha t  either a shift move 
to /5 is permissible, or a reduction by  pro- 
duction 

S --~ 'if b then '  S 

is possible. I f  we choose to shift, we shall 
associate the incoming 'else' with the last 
unelsed ' then' .  This is evident because the 
i tem with the core 

IS --~ 'if b then '  S . 'else' S] 

in I4 gives rise to the shift action. 
The complete parsing action table, with 

the conflict resolved, and the goto table con- 
structed from this collection of sets of items 
are shown below: 

Parsvng Action Table 

0: i f( input  = 'if b then')  s h i f t  2 
i f( input  = 'a') s h i f t  3 
error  

1: i f ( input  = $) a c c e p t  
error  

2: i f( input  = 'if b then')  s h i f t  2 
i f( input  = 'a') s h i f t  3 
error  

3" r e d u c e  b y :  S --+ 'a' 
4: i f ( input  = 'else') s h i f t  5 

r e d u c e  by :  S --~ 'if b then '  S 
5: i f ( input  = 'if b then ' )  s h i f t  2 

if( input  = 'a ' )  s h i f t  3 
error  

6: r e d u c e  by :  S --~ 'if b then '  S 'else' S 

Goto Table 

S: i f (s ta te  = 0) g o t o  = 1 
i f (s ta te  = 2) g o t o  = 4 
g o t o  = 6 

Given an ambiguous grammar,  with the 
appropriate  rules for resolving the ambigui- 
ties we can often directly produce a smaller 
parser from the ambiguous g rammar  than  
from the equivalent unambiguous grammar .  
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However, some of the "optimizations" dis- 
cussed in the next section will make the par- 
ser for the unambiguous grammar as small 
as that  for the ambiguous grammar. 

Example  7.3 : Consider the following gram- 
mar G3 for arithmetic expressions: 

E - ~  E ' + '  E 
E - ~  E ' , '  E 
E --* ' ( 'E ' ) '  
E --~ 'a' 

where 'a' stands for any identifier. Assuming 
that  + and • are both left associative and 
• has higher precedence than + ,  there are 
two things wrong with this grammar. First, 
it is ambiguous in that  the operands of the 
binary operators ' + '  and ' . '  can be associ- 
ated in any arbitrary way. For example, 
'a + a -4- a' can be parsed as 

or as 

The first parsing gives the usual left-to-right 
associativity, the second a right-to-left 
associativity. 

If we rewrote the grammar as G4: 

E---~ E ' A - '  T 
E---~ E ' . ' T  
E - - - ~ T  
T ~ ' ( 'E ' ) '  
T ~ 'a' 

then we would have eliminated this am- 
biguity by imposing the normal left-to-right 
associativity for + and .. However, this 
new grammar has still one more defect; + 
and • have the same precedence, so that  an 
expression of the form ' a + a , a '  would be 
evaluated as ( a + a ) . a .  To eliminate this, 
we must further rewrite the grammar as 
as: 

E - ) E  ' + '  T 
E - ~ T  
T --~ T '*' F 
T - " )  F 
F -- ' ( 'E ' ) '  
F ---) 'a' 

We can now construct ~ parser for G5 
quite easily, and find that  we have 12 states; 
if we count the number of parsing actions in 
the parser (i.e., the sum of the number of 
shift and reduce actions in all states to- 
gether with the goto actions) we see that  the 
parser for G5 has 35 actions. 

In contrast, the parser for G3 has only 10 
states, and 29 actions. A considerable part  
of the saving comes from the elimination of 
the nonterminals T and F from Gs, as well as 
the elimination of the productions E --~ T 
and T -* F. 

Let  us discuss the resolution of parsing 
action conflicts in G3 in somewhat more de- 
tail. There are two sets of items in the 
LALR(1) collection of sets of items for G3 
which generate conflicts in their parsing ac- 
tions: 

[E ---) E .  ' + '  El, { '+ ' ,  ' . ' ,  ')', '$'} 
[E --~ E .  ' , '  El, { '+ ' ,  ' , ' ,  ') ', '$'} 
[E --~ E ' + '  E .], { '+ ' ,  ' . ' ,  ') ', '$'} 

and [E --* E .  ' + '  El, { '+ ' ,  ' . ' ,  ')', '$'} 
[E -~ E .  ' , '  El, { '+ ' ,  ' . ' ,  ')', '$'} 
[E --* Z ' . '  E .1, { '+ ' ,  ' . ' ,  ') ', '$'} 
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In  both  sets of items, shift-reduce conflicts 
arise on the two terminal symbols ' + '  and 
' . ' .  For example, in the first set of items on 
an input of ' + '  we may  generate either a 
reduce action or a shift action. Since we wish 
+ to be left associative, we wish to reduce 
on this input;  a shift would have the effect of 
delaying the reduction until more of the 
string had been read, and would imply right 
associativity. On the input symbol '*', how- 
ever, if we did the reduction we would end 
up parsing the string ' a + a , a '  as ( a + a ) , a ;  
tha t  is, we would not give • higher prece- 
dence than  + .  Thus, it is correct to shift on 
this input. Using similar reasoning, we see 
tha t  it is always correct to generate a re- 
duce action from the second set of items; on 
the input symbol ' , '  this is a result of the 
left associativity of ,, while on the input 
symbol ' + '  this reflects the precedence rela- 
tion between + and ,. 

We conclude this section with an example 
of how this reasoning can be applied to our 
g rammar  G1. We noted earlier tha t  the 
g rammar  G2: 

L I S T  --* L I S T  ' , '  L I S T  
L I S T  --* 'a '  
L IST  --* 'b' 

is ambiguous, but  this ambiguity should no 
longer be of concern. Assuming tha t  the 
language designer wants to t reat  ' , '  as a left 
associative operator, then we can produce a 
parser which is smaller and faster than the 
parser for G1 produced in the last section. 
The smaller parser looks like: 

Pars ing  Ac t ion  Table 

0: 

1: 

i f ( input  = 'a') s h i f t  2 
i f ( input  = 'b') s h i f t  3 
e r r o r  

i f ( input  = '$') a c c e p t  
i f ( input  = ' , ') s h i f t  4 
e r r o r  

2: r e d u c e  by :  L IST  -~ 'a'  
3: r e d u c e  by :  L IST  --~ 'b' 
4: if( input  = 'a') s h i f t  2 

i f ( input  = 'b') s h i f t  3 
e r r o r  

5: r e d u c e  by :  L I S T  --~ L I S T  ' , '  L I S T  
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Goto Table 

LIST:  i f (s ta te  = 0) g o t o  = 1 
g o t o  = 5 

Notice tha t  we have only 14 parsing ac- 
tions in this parser, compared to the 16 
which we had in the earlier parser for G1. In  
addition, the derivation trees produced by  
this parser are smaller since the nodes cor- 
responding to the nonterminal symbol ELE-  
M E N T  are no longer there. This in turn 
means tha t  the parser makes fewer actions 
when parsing a given input string. Parsing 
of ambiguous grammars  is d~scussed by 
[Aho, Johnson, and Ullman (1973)] in more 
detail. 

8. OPTIMIZATION OF LR PARSERS 

There are a number  of ways of reducing the 
size and increasing the speed of an LR(1) 
parser without affecting its good error-de- 
tecting capability. In  this section we shall 
list a few of many  transformations that  can 
be applied to the parsing action and goto 
tables of an LR(1) parser to reduce their 
size. The transformations we list are some 
simple ones tha t  we have found to be effec- 
t ive in practice. Many  other t ransformations 
are possible and a number  of these can be 
found in the references at the end of this 
section. 

8.1 Merging Identical States 
The simplest and most  obvious "optimiza- 

t ion" is to merge states with common parsing 
actions. For example, the parsing action 
table for G1 given in Section 5 contains 
identical actions in states 0 and 5. Thus, it is 
natural  to represent this in the parser as: 

0: 5: i f ( input  = 'a') s h i f t  3 
i f ( input  = 'b') s h i f t  4 
e r r o r  

Clearly the behavior of the LR(1) parser 
using this new parsing action table is the 
same as tha t  of the LR(1) parser using the 
old table. 
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8.2 Subsuming States 
A slight generalization of the transforma- 

tion in Section 8.1 is to eliminate a state 
whose parsing actions are a suffix of the 
actions of another state. We then label the 
beginning of the suffix by the eliminated 
state. For example, if we have: 

n: i f( input  = 'x') s h i f t  p 
if( input  = 'y') s h i f t  q 
e r r o r  

and m: if( input = 'y') sh i f t  q 
e r r o r  

then we may eliminate state m by adding the 
label into the middle of state n: 

n: i f( input  = 'x ') sh i f t  p 
m: if( input  = 'y ') s h i f t  q 

e r r o r  

Permuting the order of these statements 
can increase the applicability of this op- 
timization. (See Ichbiah and Morse (1970) 
for suggestions on the implementation of this 
optimization.) 

8.3 Elimination of Reductions by Single 
Productions 
A single production is one of the form 

A -* X, where A is a nonterminal and X is 
a grammar symbol. If this production is not 
of any importance in the translation, then 
we say that  the single production is se- 
mantically mszgn~ficant. A common situa- 
tion in which single productions arise occurs 
when a grammar is used to describe the 
precedence levels and associativities of 
operators (see grammar G5 of Example 7.3). 
We can always cause an LR parser to avoid 
making these reductions; by doing so we 
make the LR parser faster, and reduce the 
number of states. (With some grammars, the 
size of the "optimized" form of the parsing 
action table may be greater than the un- 
optimized one.) 

We shall give an example in terms of G1 
which contains the single production 

LIST  --~ E L E M E N T  

We shall eliminate reductions by this pro- 
duction from the parser for G, found in Sec- 

tion 5. The only state which calls for a re- 
duction by this production is state 2. More- 
over, the only way in which we can get to 
state 2 is by the goto action 

E L E M E N T :  if(state = 0) go to  = 2 

After the parser does the reduction in state 
2, it immediately refers to the goto action 

LIST:  go to  = 1 

at which time the current state becomes 1. 
Thus, the rightmost tree is only labeled with 
state 2 for a short period of time; state 2 
represents only a step on the way to state I. 
We may eliminate this reduction by the sin- 
gle production by changing the goto action 
under E L E M E N T  to: 

E L E M E N T :  if(state = 0) go to  -- 1 

so that  we bypass state 2 and go directly to 
state 1. We now find that  state 2 can never 
be reached by any parsing action, so it can 
be eliminated. Moreover, it turns out here 
(and frequently in practice as well) that  the 
goto actions for LIST and E L E M E N T  be- 
come compatible at this point; tha t  is, the 
actions do not differ on the same state. I t  is 
always possible to merge compatible goto 
actions for nonterminals; the resulting parser 
has one less state, and one less goto action. 

Example  8.1: The following is a representa- 
tion of the parsing action and goto tables for 
an LR(1) parser for G1. I t  results from the 
parsing action and goto tables in Section 5 
by applying state merger (Section 8.1), and 
eliminating the reduction by the single pro- 
duction. 

Parsing Act ion Table 

0.  5.  i f  ( i n p u t  = ' a ' )  s h i f t  3 
i f  ( i n p u t  = 'b ' )  s h i f t  4 
error 

1: i f  ( i n p u t  = ' , ' )  s h i f t  5 
i f  ( i n p u t  = $) a c c e p t  
error 

3" r e d u c e  by:  E L E M E N T  --* 'a' 
4 r e d u c e  b y :  E L E M E N T  --~ 'b '  
6" r e duc e  by:  L I S T  -~ L I S T  ' , '  E L E M E N T  

Goto Table 

LIST:  E L E M E N T :  if(state = 0) go to  = 1 
g o t o  = 6 
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These tables are identical with those for 
the ambiguous version of G1, after the equal 
states have been identified. These tables 
differ only in that  the nonterminal symbols 
LIST and E L E M E N T  have been explicitly 
merged in the ambiguous grammar, while 
the distinction is still nominally made in the 
tables above. 

In the general case, there may be a number 
of states which call for reductions by the 
same single production, and there may be 
other parsing actions in the states which call 
for these reductions. I t  is not always possi- 
ble, in general, to perform these modifica- 
tions without increasing the number of 
states; conditions which must be satisfied in 
order to profitably carry out this process 
are given in [Aho and Ullman (1973b)]. I t  
is enough for our purposes to notice that  if 
a reduction by a single production A --* X 
is to be eliminated, and if this reduction is 
generated by exactly one set of items con- 
taining the item with the core 

[A ~ X  .] 

then this single production can be eliminated. 
I t  turns out that  the single productions 
which arise in the representation of operator 
precedence or associativity can always be 
eliminated; the result is typically the same 
as if an ambiguous grammar were written, 
and the conflicts resolved as discussed in 
Section 6. However, the ambiguous grammar 
generates the reduced parser immediately, 
without needing this optimizing algorithm 
[Aho, Johnson, and Ullman (1973)]. 

Other approaches to optimization of LR 
parsers are discussed by [Aho and Ullman 
(1972b)], [Anderson (1972)], [Jolliat (1973)], 
and [Pager (1970)]. [Anderson, Eve, and 
Horning (1973)], [Demers (1973)], and 
[Pager (1974)] also discuss the elimination of 
reductions by single productions. 

9. ERROR RECOVERY 

A properly designed LR parser will an- 
nounce that  an error has occurred as soon 
as there is no way to make a valid continua- 
tion to the input already scanned. Un- 
fortunately, it is not always easy to decide 
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what the parser should do when an error is 
detected; in general, this depends on the 
environment in which the parser is operating. 
Any scheme for error recovery must be 
carefully interfaced with the lexical analysis 
and code generation phases of compilation, 
since these operations typically have "side 
effects" which must be undone before the 
error can be considered corrected. In addi- 
tion, a compiler should recover gracefully 
from each error encountered so that  subse- 
quent errors can also be detected. 

LR parsers can accommodate a wide 
variety of error recovery stratagems. In  
place of each error entry in each state, we 
may insert an error correction routine which 
is prepared to take some extraordinary ac- 
tions to correct the error. The description of 
the state as given by the set of items fre- 
quently provides enough context information 
to allow for the construction of sophisticated 
error recovery routines. 

We shall illustrate one simple method by 
which error recovery can be introduced into 
the parsing process. This method is only one 
of many possible techniques. We introduce 
error recovery productions of the form 

A - - )  e r r o r  

into the grammar for certain selected non- 
terminals. Here, e r ro r  is a special terminal 
symbol. These error recovery productions 
will introduce items with cores of the form 

[ A  - o  . e r r o r ]  

into certain states, as well as introducing 
new states of the form 

[A  - ~  e r r o r  .] 

When the LR parser encounters an error, it 
can announce error and replace the current 
input symbol by the special terminal symbol 
e r r o r .  The parser can then discard trees 
from the parse forest, one at a time from 
right-to-left, until the current state (the 
state on the rightmost tree in the parse 
forest) has a parsing action shift on the in- 
put e r r o r .  The parser has now reached a 
state with at least one item of the form 

[ A  --* . e r r o r ]  

The parser can then perform the shift 
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action and reduce by  one of the error re- 
covery productions 

A --+ e r r o r  

(If  more than  one error recovery production 
is present, a choice would have to be speci- 
fied.) On reducing, the parser can perform a 
hand-tailored action associated with this 
error situation. One such action could be to 
skip forward on the input until an input 
symbol ' a '  was found such tha t  ' a '  can 
legitimately occur either as the last symbol 
of a string generated by A or as the first 
symbol of a string tha t  can follow A. 

Certain automatic  error recovery actions 
are also possible. For example, the error re- 
covery productions Call be mechanically 
generated for any specified set of nontermi- 
nals. Parsing and error recovery can proceed 
as above, except tha t  on reducing by  an error 
recovery production, the parser can auto- 
matically discard input symbols until it finds 
an input symbol, say 'a ' ,  on which it can 
make a legitimate parsing action, at which 
t ime normal parsing resumes. This would 
correspond to assuming tha t  an error was 
encountered while the parser was looking for 
a phrase tha t  could be reduced to nontermi- 
nal A. The parser would then assume tha t  
by  skipping forward on the input to the 
symbol ' a '  it would have found an instance 
of nonterminal A. 

Certain error recovery schemes can pro- 
duce an avalanche of error messages. To 
avoid a succession of error messages stem- 
ming from an inappropriate recovery, a 
parser might suppress the announcement  of 
subsequent errors until a certain number  of 
successful shift actions have occurred. 

We feel that ,  at  present, there is no effi- 
cient general "solution" to the error re- 
covery problem in compiling. We see faults 
with any uniform approach, including the 
one above. Moreover, the success of any 
given approach can vary  considerably from 
application to application. We feel tha t  if a 
language is cleanly designed and well hu- 
man-engineered, automat ic  error recovery 
will be easier as well. 

Part icular  methods of error recovery dur- 
ing parsing are discussed by [Aho and Peter-  
son (1972)], [Graham and Rhodes (1973)], 

[James (1972)], [Leinius (1970)], [McGruther  
(1972)], [Peterson (1972)], and [Wirth 
(1968)]. 

10. OUTPUT 

In  compiling, we are not interested in pars- 
ing but  ra ther  in producing a translation for 
the source program. LR parsing is eminently 
suitable for producing bot tom-up transla- 
tions. 

Any translation which can be expressed 
as the concatenation of outputs  which are 
associated with each production can be 
readily produced by an LR parser, without 
having to construct the forest representing 
the derivation tree. For  example, we can 
specify a translation of arithmetic expressions 
from infix notat ion to postfix Polish notat ion 
in this way. To implement  this class of trans- 
lations, when we reduce, we perform an 
output  action associated with tha t  produc- 
tion. For example, to produce postfix Polish 
from G1, we can use the following transla- 
tion scheme: 

Productwn Translatwn 

(1) E---* E ' + '  E ' + '  
(2) E - +  E '*' E '*' 
(3) E -~ ' ( 'E ' ) '  
(4) E --, 'a' 'a' 

Here, as in Section 7, we assume tha t  q- 
and • are left associative, and tha t  • has 
higher precedence than + .  The translation 
element is the output  string to be emit ted 
when the associated reduction is done. Thus, 
if the input string 

'a -t- a * (a "-k a) '  

is parsed, the output  will be 

' a a a a  + • -}-'  

These parsers can also produce three ad- 
dress code or the parse tree as output  with 
the same ease. However,  more complex 
translations may  require more elaborate 
intermediate storage. Mechanisms for im- 
plementing these translations are discussed 
in [Aho and Ullman (1973a)] and in [Lewis, 
Rosenkrantz,  and Stearns (1973)]. I t  is our 
current belief that,  if a complicated trans- 
lation is called for, the best way of imple- 
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menting it is by constructing a tree. Optimiz- 
ing transformations can then massage this 
tree before final code generation takes place. 
This scheme is simple and has low overhead 
when the input is in error. 

11. CONCLUDING REMARKS 

LR parsers belong to the class of shift-reduce 
parsing algorithms [Aho, Denning, and Ull- 
man (1972)]. These are parsers that operate 
by scanning their input from left-to-right, 
shifting input symbols onto a pushdown 
stack until the handle of the current right 
sentential form is on top of the stack; the 
handle is then reduced. This process is con- 
tinued either until all of the input has been 
scanned and the stack contains only the 
start symbol, or until an error has been en- 
countered. 

During the 1960s a number of shift-reduce 
parsing algorithms were found for various 
subclasses of the context-free grammars. The 
operator precedence grammars ]Floyd 
(1963]), the simple precedence grammars 
[Wirth and Weber (1966)], the simple mixed 
strategy precedence grammars [McKeeman, 
Horning, and Wortman (1970)], and the 
uniquely invertible weak precedence gram- 
mars [Ichbiah and Morse (1970)] are some of 
these subclasses. The definitions of these 
classes of grammars and the associated 
parsing algorithms are discussed in detail in 
[Aho and Ullman (1972a)]. 

In 1965 Knuth defined a class of gram- 
mars which he called the LR(k) grammars. 
These are the context-free grammars that 
one can naturally parse bottom-up using a 
deterministic pushdown automaton with 
k-symbol lookahead to determine shift- 
reduce parsing actions. This class of gram- 
mars includes all of the other shift-reduce 
parsable grammars and admits of a parsing 
procedure that appears to be at least as effi- 
cient as the shift-reduce parsing algorithms 
given for these other classes of grammars. 
[Lalonde, Lee, and Homing (1971)] and 
]Anderson, Eve, and Horning (1973)] pro- 
vide some empirical comparisons between 
LR and precedence parsing that support 
this conclusion. 
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In his paper Knuth outlined a method for 
constructing an LR parser for an LR gram- 
mar. However this algorithm results in 
parsers that are too large for practical use. 
A few years later [Korenjak (1969)] and par- 
ticularly [DeRemer (1969 and 1971)] suc- 
ceeded in substantially modifying Knuth's 
original parser constructing procedure to 
produce parsers of practical size. Substan- 
tial progress has been made since in improv- 
ing the size and performance of LR parsers. 

The general theory of LR(k) grammars 
and languages is developed in [Aho and Ull- 
man (1972a and 1973a)]. Proofs of the cor- 
rectness and efficacy of many of the con- 
structions in this paper can be found there. 

Perhaps the biggest advantage of LR 
parsing is that small, fast parsers can be 
mechanically generated for a large class of 
context-free grammars, that includes all 
other classes of grammars for which non- 
backtracking parsing algorithms can be 
mechanically generated. In addition, LR 
parsers are capable of detecting syntax errors 
at the earliest opportunity in a left-to-right 
scan of an input string, a property not en- 
joyed by many other parsing algorithms. 

Just as we can parse by constructing a 
derivation tree for an input string bottom-up 
(from the leaves to the root) we can also 
parse top-down by constructing the deriva- 
tion tree from the root to the leaves. A 
proper subclass of the LR grammars can 
be parsed deterministically top-down. These 
are the class of LL grammars, first studied 
by [Lewis and Stearns (1968)]. LL parsers 
are also efficient and have good error-de- 
tecting capabilities. In addition, an LL par- 
ser requires less initial optimization to be of 
practical size. However, the most serious 
disadvantage of LL techniques is that LL 
grammars tend to be unnatural and awk- 
ward to construct. Moreover, there are LR 
languages which do not possess any LL 
grammar. 

These considerations, together with prac- 
tical experience with an automatic parser 
generating system based on the principles 
expounded in this paper, lead us to believe 
that LR parsing is an important, practical 
tool for compiler design. 
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